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We study four different methods for distributing points on

the sphere and numerically analyze their relative merits with

respect to certain metrics.

1. INTRODUCTION

The problem of “evenly” distributing points on a sphere

has a long history. Albeit its intuitive meaning, it is

necessary to define “even distribution” mathematically.

Various metrics, ϑs, 0 ≤ s ≤ ∞ (see below for defini-

tions), whose extrema may correspond to even distrib-

utions have been proposed. The starting point of this

study is Problem 7 in [Smale 00] where the implications

of the distribution of points on the sphere, correspond-

ing to the global minimum of ϑ◦, for numerical analysis
are discussed. A different version of the problem based

on minimizing the Coulomb potential of electrons dis-

tributed on a sphere is generally known as the Thomson

problem in spite of the fact that the problems considered

in [Thomson 04] are quite different. [Altschuler et al.

97] reports on a numerical study of Thomson’s problem

where points are distributed on the sphere according to a

number theoretic algorithm. In [Sarnak 90], the issue of

constructing 6-good sets {R1, · · · , Rn} ⊂ SO(3) and its
relation to the Ruziewicz problem is investigated. The

explicit construction in [Sarnak 90] gives a method for

distributing points on S2 by applying Rjs (or words in

Rjs) to a random point in S2. In [Rakhmanov et al.

94] and [Kuijlaars and Saff 98], various notions of energy

(or metric) for points on a sphere and some theoretical

results are discussed.

In this work, we numerically analyze four different

methods for distributing points on S2. Besides the meth-

ods given in [Altschuler et al. 97] and [Sarnak 90], we dis-

cuss two simple geometric algorithms, the “subdivision”

and “polar coordinates” methods, the details of which

appear in the next section. The analysis of the merits

of the algorithms is based on the calculation of the met-

rics ϑ◦, and ϑ1, and we will make some remarks about
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ϑ2 and ϑ∞. Given points z1, . . . , zN on the sphere S2 of

unit radius, we set

ϑs = ϑs(z1, . . . , zN ) =
1≤j<k≤N

1

|zj − zk|s ,

where s > 0 is a positive real number and |zj−zk| denotes
the distance in R3 of zj and zk. ϑ∞ is defined as

ϑ∞ = ϑ∞(z1, . . . , zN ) = min
1≤j<k≤N

|zj − zk|.

The metric ϑ◦ = ϑ◦(z1, . . . , zN ) is more appropriately
defined for points on the sphere S21

2

of unit diameter and

is defined as

ϑ◦ =
1≤j<k≤N

log
1

|zj − zk| .

Here also, |zj − zk| refers to the distance of zj and zk in
R3.
The numerical evidence reported in this article sug-

gests that the simpler geometric methods give values for

ϑ◦ and ϑ1 which are closer to the actual optima than

those obtained in [Altschuler et al. 97] (lattice point

method) or [Sarnak 90]. In fact, we obtain configura-

tions, via the polar coordinates method, for which ϑ1 is

smaller than the conjectured global minimum reported

in [Altschuler et al. 97]. The performance of the method

of [Sarnak 90] in decisively inferior to the lattice point or

the polar coordinates methods for ϑs, s ∈ [0,∞]. For a
small or moderate number of points, standard optimiza-

tion algorithms give only slight improvements over the

values reported here. The fact that the optimized values

for ϑ◦ (or ϑ1) are close is a reflection of the profusion
of local minima for either metric. For a large number

of points (more than 5,000), the computationally inten-

sive nature of the optimization algorithms render them

impractical.

A disadvantage of the method in [Altschuler et al. 97]

is that to distribute N points on S2, N should satisfy a

certain diophantine equation which has a solution only

for a small fraction of positive integers N . The polar

coordinates method, on the other hand, is applicable to

practically every N . One may optimistically conjecture

that the polar coordinates method will distribute points

on the sphere in such a way that the estimate,

|ϑ◦(z1, . . . , zN ) + N

2
log VN | ≤ C logN,

of Problem 7 of [Smale 00] is fulfilled for N ≤ 105 (see
Section 3 for a definition of VN and explanations) with

C ≤ 2.

In the application of any optimization algorithm to a

complex problem, the judicious choice of an initial point

is critical. The emphasis of this paper is the choice of a

“good” initial point. A successful application of an opti-

mization algorithm via the application of the fast multi-

pole method (see, e.g., [Greengard and Rokhlin 97]) may

be possible. This issue is currently under investigation

and is not discussed here. It should be pointed out that a

random choice of points on S2 (according to the standard

invariant measure) leads to poor values for ϑs as com-

pared to those obtained via the algorithm in [Altschuler

et al. 97] and a fortiori to the polar coordinates method.

2. THE METRICS

The motivation for the metric ϑ1 is the familiar Coulomb

potential. Minimizing the metric ϑ1 appears to have

implications for the stable molecular configurations in

chemistry. We set

EsN = inf ϑs(z1, . . . , zN ), for s <∞,

where inf (or, in fact, min) is taken relative to all possible

configurations of N points on S2. For s =∞, we set

E∞N = supϑ∞(z1, . . . , zN ).

It is known [KS] that EsN admits of the asymptotic ex-

pansion

EsN l
2−s

2− sN
2 +O(N1+ s

2 ), for 0 < s < 2, (2—1)

as N −→∞. Furthermore,

lim
N→∞

E2N
N2 logN

=
1

8
. (2—2)

For s = 0, we have

E◦N l
1

4
N2 − 1

4
N logN +O(N). (2—3)

The metric ϑ◦ appears in classical potential theory.
Let z1, . . . , zN be points on the sphere S

2
1
2
⊂ R3 of diam-

eter 1, and let

UN = UN (z1, . . . , zN ) =
1≤i<j≤N

|zj − zk|
1

(N2) .

Set

VN = supUN (z1, . . . , zN )
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where sup is taken relative to all configurations of N

points. Then VN+1 ≤ VN and it is a classical result (see

[Tsuji 75], Chapter III) that

lim
N→∞

VN =
1√
e
, (2—4)

compatible with (2—3). For each N , the supremum in the

definition of VN is, in fact, a maximum. A set of points

{z1, · · · , zN} realizing sup is called elliptic Fekete points.
It is shown in [Shub and Smale 93] that for such a set

{z1, · · · , zN}, the polynomials

PN (z) =
N

k=1

(z − zk)

have desirable condition numbers. Here, PN is regarded

as a polynomial in z ∈ C by the stereographic projection
of the points zk to the complex plane. The condition

number of a polynomial as defined in [Shub and Smale

93] is a modification of the classical definition sup 1
|P I(ζ)|

where sup is taken relative to the zeros of P . The re-

markable property of Fekete points is that the condition

number of PN is bounded by N(N + 1), while for ran-

domly chosen z1, · · · , zN , the condition number of PN (z)
appears to grow exponentially fast. The importance of

slowly growing condition numbers is due to their applica-

tion to the Newton and homotopy methods in numerical

analysis.

While the existence of elliptic Fekete points and the

limit (2—4) is classical, their explicit determination is a

major unsolved problem. It is therefore desirable to ob-

tain approximations. To properly quantify the approxi-

mation, we take the logarithm of UN which gives

− N

2
logUN = ϑ◦.

In view of (2—3), the lead term of the asymptotic expan-

sion of − N
2 logVN is N2

4 and, in fact, we have

− N

2
logVN =

N2

4
− N logN

4
+O(N),

as N −→ ∞. The estimate N logN for the second term

follows from standard arguments of classical potential

theory. It quantifies the rate of convergence of VN to
1√
e
in (2—4). An approximate version of the problem of

the explicit determination of Fekete points is to exhibit

z1, . . . , zN such that

|ϑ◦(z1, . . . , zN ) + N

2
logVN | ≤ C logN. (2—5)

To better understand the quantities ϑs, we introduce

some notation

ξ◦ = lim
N→∞

ϑ◦ − N2

4

N logN
, η◦ = lim

N→∞
ϑ◦ − N2

4 + N logN
4

N
,

ζ◦ = lim
N→∞

ϑ◦ − N2

4 + N logN
4 + η◦N

logN
,

and

ξ1 = lim
N→∞

ϑ1 − N2

2

N
3
2

, η1 = lim
N→∞

ϑ1 − N2

2 + ξ1N
3
2

N
,

ξ2 = lim
N→∞

ϑ2 − 1
8N

2 logN

N2
.

3. THE METHODS

We briefly describe four algorithms for generating points

on a sphere.

3.1 -Good Sets

A finite set {R1, . . . , Rn} ⊂ SO(3) is called an 6-good set
if for every continuous function ψ on S2 with ψ = 0,

there is j such that

S2
|ψ(x)− ψ ◦Rj(x)|2dx ≥ 62

S2
|ψ(x)|2dx.

It is an elementary argument that 6 ≤ √2 is necessary
for the existence of an 6-good set. We make use of the

algorithm for constructing 6-good sets for arbitrary 6 <√
2 given in [Sa]. Let p ≡ 1 mod 4 be a prime. Then

according to a classical theorem of Jacobi, the equation

a2◦ + a
2
1 + a

2
2 + a

2
3 = p

has 8(p + 1) solutions (a◦, a1, a2, a3) in integers. Each
solution yields a quaternion ga = a◦+a1i+a2j+a3k. The
quaternion group H = {±1,±i,±j,±k} of order eight
acts on the set of solutions, and from each orbit, we pick

one solution. Thus, we obtain p+1 solutions of the form

ga = a◦ + a1i+ a2j+ a3k, ga = a◦ − a1i− a2j− a3k.

Now ha = ga√
gaga

and hIa = ḡa√
gaga

lie in SU(2) and

are inverses to each other. The images of the unit

quaternions ha, ha in SO(3) under the canonical projec-

tion SU(2)→ SO(3) give an 6-good set {R1, . . . , Rp+1}.
Here, 6 depends on p and by taking p ≡ 1 mod 4 suffi-
ciently large, we can make 6 arbitrarily close to

√
2. One

can also take p to be a small prime, and instead look at

words of a given length in R1, . . . , Rp+1. In either case,
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to generate points on S2, we consider a random point

e ∈ S2 and look at its image under the action of the 6-
good subset of SO(3). Since for the construction of an

6-good set, we only used one representative from each

orbit of H, the distribution of points on S2 will be very

biased and it is necessary to choose representatives from

orbits under Z/2 l {±1}.

3.2 Lattice Points

This method was used in [Altschuler et al. 97] to gener-

ate an initial configuration for N = 10(m2+n2+mn)+2,

where m and n are integers, points on S2. By optimiz-

ing relative to the metric ϑ1, it was surmised that the

absolute minimum was, in fact, attained provided N is

only moderately large (for example, < 5, 000). Generally

speaking, the method of [Altschuler et al. 97] is as fol-

lows: Let ζ = e
iπ
3 and consider the equilateral triangle

∆ in C with vertices at 0,m + ζn and ζm + ζ2n. The

intersection of the lattice L generated by 1, ζ with ∆ is a

finite number of points in ∆. By mapping ∆ onto a face

of the regular icosahedron inscribed in the unit sphere,

repeating the process by reflections for the other faces,

and projecting radially onto S2, we obtain N points on

S2. The resulting configuration is the initial point for

minimizing ϑ1 in [Altschuler et al. 97].

The diophantine equation N = 10(m2 + n2 +mn) + 2

does not have a solution for every N and therefore, the

method of [Altschuler et al. 97] is applicable only to those

N for which it has a solution. Let νA(N) be the number

of integers l ≤ N for which l = 10(m2+n2+mn)+2 has

a solution. According to our calculations,

νA(N) = c1N + c2
√
N + o(

√
N),

where c1 l .018 and c2 l 2.1. It is classical and easy

to prove that the density of values assumed by a positive

definite quadratic form ax2+bxy+cy2, as x, y range over

the integer lattice, is asymptotically given by

2π√
4ac− b2N + o(N).

However, in this formula, values are counted with multi-

plicity and is therefore irrelevant to the present context.

3.3 Subdivision of the Icosahedron

Given a triangle ABC, let a, b, and c be the midpoints

of the sides BC, CA, and AB, respectively. Then the

triangle abc subdivides ABC into four triangles. The

same process can be applied to all 20 faces of the icosa-

hedron to obtain a triangulation of 80 faces, 120 edges,

and 42 vertices. Projecting radially to the sphere, we

obtain a triangulation of the sphere. The vertices are

expected to be approximately an optimal configuration

of 42 points on the sphere. The process of the subdivi-

sion can be iterated to obtain arbitrarily large number of

points on the sphere. In addition, after each subdivision,

we may add an additional point, such as the centroid,

to each triangle to increase the number of points. This

modification of the algorithm does not lead to an approx-

imately optimal configuration. On the other hand, by

using the
√
3-subdivision algorithm (familiar from Geo-

metric Modelling–see [Kobbelt 00]) followed by radial

projection on the sphere, we may insert one additional

point in each triangle while maintaining the approximate

optimality property. We refer to the latter as
√
3 and to

the former as midpoint subdivisions. They are variations

on the same method. It is possible to start with configu-

rations other than the icosahedron and proceed with the

subdivision as before. This may lead to better config-

urations relative to the ϑ2 metric as shown later in the

paper. A disadvantage of this method is that the set of

N to which the algorithm is applicable is very sparse. In

fact, let νS(N) be the number of integers l ≤ N such

that it is possible to distribute l points on the sphere by

subdivisions of the icosahedron. It is not difficult to show

that νS(N) l c logN .

3.4 Polar Coordinates Subdivision

This method has some similarity to the spiral algorithm

of [Rakhmanov et al. 94]. For clarity of exposition, we

first describe the method in a special case. Let (ϕ, θ)

denote polar coordinates on the sphere with −π
2 ≤ ϕ ≤ π

2

and 0 ≤ θ ≤ 2π. We consider (n − 1) equally spaced
latitudes Lj corresponding to ϕ = φj =

πj
n − π

2 where

j = 1, . . . , (n−1). On the latitude Lj , we place nj equally
spaced points, starting at θ = 0, where nj is given by

nj = u1
2
+
√
3n cosφjJ.

On alternate latitudes, an obvious phase shift is imposed

to make the configuration more symmetric. Together

with the two poles, we obtain a configuration of points

on S2. This configuration is invariant under reflections

relative to the equator and for this reason we refer to this

special case as the symmetric polar coordinates method.

Denoting by νSP (N) the number of l ≤ N which can be

distributed on S2 according to this algorithm, one shows

easily that

νSP (N) l C
√
N.
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To overcome this undesirable feature of sparsity of N to

which the method is applicable, we make a perturbation

of the algorithm. Instead of starting with the equator

and distributing n points evenly on it, we begin with a

meridian parallel to and a distance 6 > 0 from it. On

the meridian, we evenly distribute n points. Next, we

proceed as in the special case of the symmetric polar co-

ordinates method and distribute points on meridians par-

allel to the initial one. The distance of adjacent merid-

ians and the number of points on each are determined

by n and the initial meridian. A shifting of points on

alternate meridians is necessary to obtain approximately

equilateral triangles. Notice that the poles are no longer

necessarily part of the configuration of the points on the

sphere. The actual implementation of the algorithm re-

quires solving for 6 and the number n of points on the

initial meridian, and we utilized the secant method with

only few iterations. In this manner, we were able to more

or less distribute any number of points on the sphere.

More precisely, we say we have a gap of length λ = j at

l if

min |lI − l| = j,

where min taken relative to all integers lI for which we can
distribute lI points on the sphere by this implementation.
Table 1 shows the frequencies of gaps of various sizes for

integers ≤ 4× 105 in our implementation.

Size of Gap λ = 0 λ = 1 λ = 2 λ ≥ 3
Frequency of Gaps .9836 .0118 .0013 .0033

TABLE 1. Sizes and frequencies of gaps.

Note that for more than 98% of the integers N ≤
4×105, we have realized distributions of N points on S2.

4. NUMERICAL RESULTS

To numerically study the distribution of points on a

sphere via 6-good sets, we considered all primes of the

form 4k+1 less than 350. For each p, we obtain 4(p+1)

points on the sphere. Since the distribution of points de-

pends on the choice of an initial point on the sphere, we

calculated the metrics ϑj , j = 1, 2, for five initial ran-

dom points. It is clear that an inappropriate choice of

an initial point (e.g., the point (1, 0, 0)) will lead to an

“un-even” distribution of points. For random choices of

initial point, there is little qualitative difference in the

results. Figure 1 is the graph of logUN versus N for five

different random initial points for all p ≡ 1 mod 4 and

≤ 349. The bold face line is the average of the five values

FIGURE 1.

for logUN . The dotted line shows logUN where the con-

figuration is obtained via the lattice points method. It is

clear that 6-good sets do not provide satisfactory config-

urations for the distribution of points on the sphere rel-

ative to ϑ◦. A similar conclusion is valid for ϑ1. Figure
2 shows the distribution of N = 552 points (p = 137) on

the sphere. The evident “clustering” resembles a similar

phenomenon when points are chosen randomly according

to the invariant measure.

Using the lattice points method, we generated up to

25, 872 = 10(372 +212+37.21)+ 2 points on the sphere.

Figure 3 shows ϑ1 versus the number of points for the lat-

tice points method, midpoint and
√
3-subdivisions of the

icosahedron, and polar coordinates methods. For graph-

ical purposes and in view of the asymptotic expansion

of E1N , we normalized ϑ1 by division by the number of

FIGURE 2.
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FIGURE 3. logUN . FIGURE 4. ϑ1
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FIGURE 5. Calculation of ξ1 l ϑ1−N2

2

N
3
2
. FIGURE 6. Calculation of ξ◦ l ϑ◦−N2

4
N logN .

No. of Points 912 1082 1332 1482 2172 2432 2472 3332

Lattice 400661 565705 860262 1066650 2302881 2891066 2987505 5444875

Polar 400661 565704 860258 1066647 2302866 2891053 2987493 5444840

TABLE 2. Comparison of Coulomb energy for the lattice points and polar coordinates methods after optimization.

pairs of points N
2 . Denoting the corresponding values

of ϑj by ϑ
A
j , ϑ

M
j , ϑ

√
3

j , and ϑPj , respectively, we note the

inequalities

ϑA1 > ϑM1 > ϑ
√
3

1 > ϑP1 . (4—1)

The number of points generated by the subdivision of

the icosahedron grows exponentially fast with iterations,

and therefore, the data for this method are very sparse.

The curves in Figure 3 were obtained by spline interpola-

tion. The number of configurations for the lattice points

method was 796. No spline interpolation was necessary

for the polar coordinates method since 24,486 configura-

tions were available. The inequalities (4—1) raise doubts

about the optimality conjecture in [Altschuler et al. 97].

In fact, we optimized ϑ1 (using a quasi-Newton method)

for some configurations obtained via the polar coordi-

nates for comparison with the lattice points method.

The results (rounded off to the nearest integer), given

in Table 2, demonstrate that the optimality conjecture

of [Altschuler et al. 97] is incorrect. The fact that the

optimized values for the two methods are close reflects

the profusion of local minima for ϑ1.

Figure 4 shows the relative merits of the above meth-

ods relative to logUN without the application of an op-
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. FIGURE 8. Calculation of η1 l ϑ1−N2

2
+ξ1N

3
2

N .

FIGURE 9. Calculation of η◦ l ϑ◦−N2

4
+N logN

4
N

. FIGURE 10. Coefficient of logN in (4—4).

timization algorithm. In fact, we have the inequalities

ϑA◦ > ϑM◦ > ϑ
√
3
◦ > ϑP◦ . (4—2)

It appears that the polar coordinates method consistently

provides more suitable configurations for points on the

sphere. The advantage of the polar coordinates method

over the lattice points and subdivision algorithms for

both ϑ1 and ϑ◦ is evident from Figures 5 and 6.

For some moderate values of N , we applied a quasi-

Newton optimization algorithm to calculate ϑA◦ and ϑ
P
◦

using the lattice points and polar coordinates methods

for initial configurations. The differences in the values

are generally in the decimal points only; they are given

in Table 3.

From Figures 7 and 8, the values of ξ1 and η1 may be

approximately estimated, and we conjecture the follow-

No. of Points 912 1082 1332 1482 2172 2432 2472 3332

ϑA◦ − ϑP◦ -.087 -.029 .038 .123 .400 .384 .355 .982

TABLE 3. Comparison of ϑA◦ and ϑ
P
◦ for the lattice points

and polar coordinates methods after optimization.

ing asymptotic expansion for ϑ1:

ϑ1 =
N2

2
− αN 3

2 + βN +O(N
1
2 ), (4—3)

with α l .55 and 0 < β << α. Similarly (see Figures 9

and 10), we conjecture the following asymptotic expan-

sions for ϑ◦:

ϑ◦ =
N2

4
− N logN

4
+ γN +O(logN), (4—4)

with γ l .37.
An examination of the optimized versus nonoptimized

(polar coordinates method) values for ϑ◦ shows that the
improvement in the value of ϑ◦ is of the order of logN .
If the optimized values are indeed the global minima for

those N for which the optimization was carried out, then

it is natural to conjecture that the polar coordinates con-

figuration has indeed an error of the order of logN and

the error in the polar coordinates method is quantified

in (2—5) with C = 2.

The configurations of points according to the lattice

points method has more symmetry than that of the polar

coordinates method, however, the latter generally yields

lower values for ϑs. This may be interpreted as another
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FIGURE 11. Histogram for minimum distances FIGURE 12. Histogram for minimum Distances

for lattice points method. for polar coordinates method.
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FIGURE 13. Calculation for ϑ2
N2 logN

FIGURE 14. Calculation for ξ2 l ϑ2− 1
8N
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N2

with different methods. with different methods.

example of breakdown of symmetry in optimal configura-

tions which is familiar in other applications as well (e.g.,

the central configuration in celestial mechanics). It also

shows that in spite of the proximity of the values of ϑ◦
(or ϑ1) obtained by the lattice point or polar coordinates

methods, they correspond to different local minima. A

visual demonstration of the nature of ϑ1 for N = 2432 is

given in Figures 15 through 19. High-frequency (blue) ar-

eas are regions of low Coulomb energy and low-frequency

(orange) areas are regions of high Coulomb energy. Red

vertices are those with valence W= 6 in the graph where

each point is joined to its “nearest neighbors.” For ease of

comparison, all local energies have been scaled according

to a universal scheme.

An examination of the lattice points and polar coordi-

nates methods relative to ϑ∞ generally favors the polar

coordinates method. Figures 11 and 12 show typical his-

tograms for the distribution of the minimum distances

of the points on the sphere. Except for a few outlying

points, the distribution of minimum distances by the po-

lar coordinates method appears superior. This defect can

probably be rectified by a minor adjustment of the algo-

rithm.

To better understand the distribution of points rela-

tive to ϑ2 metric, the lattice points,
√
3-subdivision, and

polar coordinates methods were applied for the distrib-

ution of large numbers of points. Figure 13 shows that

generally the polar coordinates method has lower value

for ϑ2 than the subdivision or lattice points methods.

There are a few exceptional cases where the polar co-

ordinates method gives unreasonable values for ϑ2. Af-

ter the elimination of these exceptional values of N , we

still have configurations for the great majority of val-

ues of N ≤ 105 with lower ϑ2 than other methods. In

general, it is observed that there are subtle differences

between distinct values for N , but it seems difficult to

quantify these differences. In the application of the sub-

division algorithm, we used as initial configurations the

vertices of the icosahedron and 22 points with optimized

configuration. The results show that subdivisions start-

ing with the latter configuration give better results than

those with the former. Figure 14 gives an estimate for
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FIGURE 15.
√
3-subdivision prior to optimization.

FIGURE 16. Lattice points method prior to FIGURE 17. Initial lattice points configuration with
optimization. Coulomb energy optimized.

FIGURE 18. Polar coordinates method prior to FIGURE 19. Initial polar coordinates configuration with
optimization. Coulomb energy optimized.
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the value ξ2 and we accordingly conjecture the following

asymptotic expansion:

ϑ2 l 1
8
N2 logN − δN2 + o(N2), where δ l .04.

To each configuration of N points, we assign a graph

by joining each point to its “neighboring” ones for the

appropriate definition of “neighbor.” We used a standard

triangulation method from computational geometry. The

method of [Altschuler et al. 97] and the subdivision of

the icosahedron have the obvious property that all but

twelve vertices have valence 6. In the polar coordinates

method, we noticed that it is possible to have vertices

with valences 4, 5, 6, or 7. Denoting the number of ver-

tices of valence j by Vj , we noticed that

V4 = 0 for sufficiently large N, V5 = V7 + 12 = O(N 1
2 ).

For each vertex v of a triangulation of compact sur-

face M without boundary, let κv = 6− V(v) where V(v)
denotes the valence of the vertex v. One may reasonably

call κv the discrete curvature of the given triangulation at

the vertex v. Then we have the following discrete version

of the Gauss-Bonnet theorem for surfaces:

v

κv = 6χ(M), (4—5)

where χ(M) denotes the Euler characteristics ofM . The

proof of this identity is by a straightforward substitution

in the definition of χ(M) and the simplest case of the

Dehn-Sommerville relations, namely,

2e = 3f,

where the e and f denote the number of edges and faces

of the triangulation, respectively. A consequence of (4—5)

is that if there are only vertices with valences 5, 6, and

7, then V5 = V7 + 12 for any triangulation of the sphere.
It is immediate that the S2 admits of triangulations with

constant discrete curvature κ = 1, 2, or 3 and the torus

admits of triangulations with zero discrete curvature. For

surfaces Mg of genus g ≥ 2, there are triangulations of
constant discrete curvature −1, and for most g ≥ 5, we
have constructed triangulations of Mg with constant dis-

crete curvature −2. Generally, there is a profusion of
distinct triangulations for given constant discrete curva-

ture κ < 0 and Mg (when it exists), but its quantifica-

tion seems quite difficult. A generalization of the notion

of discrete curvature κv to higher dimensions is possible.

There is also empirical evidence that the distribution of

the eigenvalues of the dual graphs (i.e., 1-skeletons of

the subdivision dual to the given triangulation), which

are 3-regular graphs, do in fact reflect some of the met-

ric properties of the configuration. For certain sequences

of configurations obtained by subdivisions, the empirical

distributions of the eigenvalues converge. The nature of

the limiting measure, whether it is pure point, singular,

or absolutely continuous, is difficult to determine; em-

pirically, it seems to reflect the metric properties of the

method of subdivision. These issues will be elaborated

on elsewhere.

A preprint of this article can be found at

http://math.ipm.ac.ir/scc/publications.htm.
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