
2024-04-01 USB IO Expander Rob Jansen

USB I/O Expander

Introduction
The USB I/O Expander offers all kind of interfaces to the outside world, controlled via an USB

connection using a PIC 16F1455 Microcontroller. The PIC is programmed with the JAL programming

language. The features of the USB IO Expander are:

 Reading and writing eight I/O pins

 IIC interface for controlling IIC devices

 SPI interface for controlling SPI devices

 Digital to Analog Conversion (DAC) with 2 selectable analog outputs

 Analog to Digital Conversion (ADC) with 4 selectable analog inputs

 Two channel Pulse Width Modulation (PWM) signal generator

When connected to the USB port of a PC, the USB I/O Expander is detected as a COM port (serial

port). The USB IO Expander is therefore controlled using commands transmitted as ASCII characters.

Pin assignments
The table below shows which pins can be used for which functionality. Pins are numbered from 0

(least significant) to 7 (most significant) also see the schematic diagram below. The PIC Pin can be

found in the datasheet of the PIC16F1455.

Pin PIC Pin NR PIC Pin Name Functions

0 10 RC0 I/O / IIC clock / SPI Clock Out / ADC In 4

1 9 RC1 I/O / IIC Data / SPI Data In / ADC In 5

2 8 RC2 I/O / SPI Data Out / DAC Out 1 / ADC In 6

3 7 RC3 I/O / PWM Out 2 / DAC Out 2 / ADC In 7

4 6 RC4 I/O

5 5 RC5 I/O / PWM out 1

6 3 RA4 I/O / ADC In 3

7 2 RA5 I/O

Schematic Diagram
The USB I/O Expander is powered by the USB port (+5 Volt).

2024-04-01 USB IO Expander Rob Jansen

Command and Control
The USB I/O Expander acts as a COM port and is controlled using commands and data in ASCII

format. All data is transmitted as hexadecimal bytes except for the response that is returned by the

USB I/O Expander after executing a command. A command is executed after detecting a carriage

return or a line feed.

The COM port settings are (although not really relevant for USB):

 Baudrate 115200 baud

 8 bits, 1 stop bit, no parity

 RTS/CTS flow control must be enabled

The advantage of using this device as a COM port is that you can control it using a terminal emulation

program on your computer by typing commands. There is no need for special libraries to control the

USB I/O Expander.

Command response
After executing a command the following response is given as ASCII character:

 0 = Command OK

 1 = Error in command or its parameters

 2 = Unknown command

Note that certain checks are done about the status of the device. This means that an error is also

given when e.g. reading a port pin while the pin is set to output instead of input or when using the IIC

interface while it was not initialized.

Command format and answer format
The general format of a command is as follows:
 !<command><data><cr><lf>

 All <data> must be given in ASCII in hexadecimal format (00..FF). Spaces in the data are ignored.

Command and data are case insensitive.

If the command is executed (or incorrect) the response as mentioned earlier is given. One command

including its data may not be longer than 64 characters.

When data is returned, e.g. when reading data via the IIC interface the answer format is:
 ?<data><cr><lf>

All data is returned in hexadecimal format. No spaces are given between the bytes in the data.

Maximum message length
The maximum length of a command with its data or an answer should not be longer than 64

characters. This means that when e.g. the contents of a memory needs to be read, it has to be done

in chunks of at most 64 characters or 32 bytes.

2024-04-01 USB IO Expander Rob Jansen

Command overview
The following commands are supported

Command Function Parameters / Answer
!RES Resets the

device.

The COM port will

disconnect shortly.

!PING Returns 0 when

alive.

-

!PID<pin><direction> Set pin

direction.

<pin>: 00..07

<direction>: 00 = output

 01 = input

!PIM<pin><mode> Set pin mode. <pin>: 00, 01, 02, 03, 06

<mode>: 00 = digital

 01 = analog

!PIP<pin><pull-up> Set pin internal

weak pull-up

resistor.

<pin>: 06 or 07

<pull-up>: 00 = disabled

 01 = enabled

!PIW<pin><data> Write data to the

pin.

<pin>: 00..07

<data>: 00 = pin low

 01 = pin high

!PIR<pin> Read data from

the pin.

<pin>: 00..07

<answer>: 00 = pin low

 01 = pin high

!PYD<direction> Set the direction

of all pins at

once (pin 0..7).

<direction>: 00..FF where

bit 0 is the LSB.

bit is 0 = output

bit is 1 = input

!PYW<data> Write data to all

pins at once (pin

0..7).

<data>: 00..FF where bit 0

is the LSB.

bit is 0 = pin low

bit is 1 = pin high

!PYR Read the value of

all pins at once

(pin 0..7).

<answer>: 00..FF where bit

0 is the LSB.

bit is 0 = pin low

bit is 1 = pin high

!IICI<speed> Initialize the

IIC interface

using the given

speed.

<speed>: 00 = 96 kHz

 01 = 100 kHz

 04 = 400 kHz

 0A = 1 MHz

!IICW<data> Write the given

data via the IIC

interface.

<data>: data to be written

!IICR<nr_of_bytes> Read the given

number of bytes

via the IIC

interface.

<nr_of_bytes>: number of

bytes that has to be read.

<answer>: data read

!DACI<output> Initialize the

DAC using the

given output. VDD

is used as

reference

voltage. DAC is

disabled.

<output>: 01 or 02

!DACE Enable the DAC. -

!DACD Disable the DAC. -

!DACW<data> Write the given

data to the DAC.

<data>:00..1F

 (0..31)

!SPII<mode><rate> Initialize the

SPI interface

<mode>:00..03, where

00 = CKP=1 & CKE = 1

01 = CKP=0 & CKE = 0

2024-04-01 USB IO Expander Rob Jansen

Command Function Parameters / Answer
using the given

mode and rate.

See the datasheet

for more

information on

CKP and CKE

settings.

Fosc is 48 MHz.

02 = CKP=1 & CKE = 1

03 = CKP=1 & CKE = 0

<rate>: 00..02, where

00 = Fosc / 4,

01 = Fosc / 16

02 = Fosc / 64

!SPIW<data> Write the given

data via the SPI

interface.

<data>: data to be written

!SPIR<nr_of_bytes> Read the given

number of bytes

via the SPI

interface.

<nr_of_bytes>: number of

bytes that has to be read.

<answer>: data read

!ADCI<channel> Initialize the

ADC for the given

channel. VDD is

used as reference

voltage.

<channel>: 03, 04, 05, 06,

 07

!ADCE Enable the ADC. -

!ADCD Disable the ADC. -

!ADCC<channel> Select the given

ADC channel.

<channel>: 03, 04, 05, 06,

 07

!ADCR Read the ADC

value of the last

selected channel.

<answer>: 0000..03FF

!PWMI<channel> Initialize the

PWM hardware for

the given

channel. The duty

cycle is set to

50%.

<channel>: 01 or 02

!PWME<channel> Enable the given

PWM channel.

<channel>: 01 or 02

!PWMD<channel> Disable the given

PWM channel.

<channel>: 01 or 02

!PWMF<frequency> Set the PWM

frequency. This

is the same for

both channels.

<frequency>: 02EE..AFC8

 (750Hz..45kHz)

!PWMC<channel><duty_cycle> Set the duty

cycle in

percentage on the

last selected

channel.

<channel>: 01 or 02

<duty_cycle>: 00..64

 (0%..100%)

When executing commands, certain preconditions must be satisfied, otherwise the response will

return as 1. For example:

 When reading a pin, the direction must have been set to input

 When using the IIC interface or SPI interface, the interface must have been initialized.

2024-04-01 USB IO Expander Rob Jansen

Command examples
In the following pictures some commands are shown including the response of the USB I/O Expander.

The demo shows the reading data and writing data to an IIC EEPROM having IIC address 0xAE. The

steps shown are:

1. Ping the device. This is optional, just checking if the device is alive.

2. Initialize the IIC interface at 400 kHz.

3. Reset the register – word - address of the EEPROM to 0 before reading.

4. Read 10 bytes from the EEPROM (starting at word address 0). EEPROM is empty (0xFF).

5. Write 10 bytes of data starting at word address 0.

6. Reset the register – word - address of the EEPROM to 0 before reading.

7. Read 10 bytes from the EEPROM (starting at word address 0)

Commands are given in blue, the response (0) and the answers (?) in green. Note that all data must

be given as hexadecimal numbers.

Python library and examples
In order to make life easier a Python library ‘usb_io_expander.py’ was created including several

examples that where created for testing the USB IO Expander. The following Python examples are

provided:

 Test_Pins_Output.py – Controlling the I/O pins as output.

 Test_Pins_Input.py – Controlling the I/O pins as input.

 Test_IIC_EEPROM.py – Reading and writing data to an EEPROM via IIC.

 Test_IIC_MCP23008.py – Controlling I/O pins using an I/O expander, controlled via IIC.

 Test_IIC_MCP23S08.py – Controlling I/O pins using an I/O expander, controlled via SPI.

 Test_ADC.py – Converting an analog input signal to a digital value

 Test_DAC.py – Converting a digital value to an analog output signal

 Test PWM.py – Generating a Pulse Width Modulation signal

2024-04-01 USB IO Expander Rob Jansen

Video
If you want to see the device with the Python examples in action, have a look at this video:

 https://www.youtube.com/watch?v=qW1vgoj1i80

References
If you want to know more about the JAL programming language visit the JAL website at:

http://justanotherlanguage.org/

https://www.youtube.com/watch?v=qW1vgoj1i80
http://justanotherlanguage.org/

