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Introduction and Background 

Rheometers are lab devices used to measure the viscosity and other dynamic properties             

(rheology) of fluids. These measurements are typically performed by applying forces and torques             

to a fluid in a controlled setting then measuring the fluid response.​1 The most common type of                 

rheometer is a shear, also known as a rotational, rheometer. These rheometers measure rheology              

by applying a torque to a specified geometry in contact with a fluid and recording the stresses                 

and strains.​2 There are also oscillatory rheometers which determine rheology by measuring either             

the fluid response to a forced vibration or the response of a vibrating system submerged in a                 

fluid.​3 Rheometers are typically expensive (tens of thousands of dollars​4​) due to the sensitivity of               

the equipment and measurements, and there are no clear options for a more affordable rheometer.               

Using published research​5 on the dynamics of a submerged spring-mass system with a spherical              

geometry as a starting point, we aim to produce a low-cost oscillatory rheometer to satisfy the                

need for an affordable option.  

To develop a low-cost rheometer that can adequately predict the viscosity of different             

fluids, we explore a single degree of freedom oscillating system in the form of a spring-mass                

system submerged in fluid. We aim to develop a device that can be easily reconfigured to expand                 

the class of fluids for which adequate results may be obtained. That is, the device is designed so                  

that users may easily switch the bobbing mass, the stiffness of the spring, and the external                

forcing imposed on the mass. Simple variation of these parameters can expand the classes of               

fluids users may test without deviation from our models presented below. 

 

Project Status 

At the time of the creation of this document (December 2020), the rheometer described              

below can adequately determine the viscosity of Newtonian fluids within about 50% of the actual               

value, with much more accurate results at lower viscosities. It can report a viscosity for               

non-Newtonian fluids, but it is unreliable. The only geometry tested so far is a sphere, but the                 

size of the sphere can be tweaked to give more precise results depending on the fluid properties.  

1 ​https://wiki.anton-paar.com/en/basics-of-rheology/#basics-of-rheology  
2 ​https://www.labcompare.com/Chemical-Analysis-Equipment/602-Rotational-Rheometer/  
3 ​http://www.mate.tue.nl/~wyss/home/resources/publications/2007/Wyss_GIT_Lab_J_2007.pdf 
4 ​https://www.ptonline.com/articles/rheometers-which-type-is-right-for-you  
5 Dolfo, G., Vigué, J. & Lhuillier, D. Experimental test of unsteady Stokes’ drag force on a sphere. ​Exp Fluids​ 61, 97 (2020). 
https://doi.org/10.1007/s00348-020-2936-6  

 

https://wiki.anton-paar.com/en/basics-of-rheology/#basics-of-rheology
https://www.labcompare.com/Chemical-Analysis-Equipment/602-Rotational-Rheometer/
http://www.mate.tue.nl/~wyss/home/resources/publications/2007/Wyss_GIT_Lab_J_2007.pdf
https://www.ptonline.com/articles/rheometers-which-type-is-right-for-you
https://doi.org/10.1007/s00348-020-2936-6
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Experimental Methodology and Protocol 

To build toward the final goal of determining a fluid’s viscosity, we begin by measuring               

the natural, undamped frequency of the spring-mass system when not submerged in fluid. We              

can compare this free natural frequency ​ω​n to a measured damped natural frequency ​ω​d when the                

system is submerged in fluid. We model the system with the following general equation of               

motion with natural (​ω​n​) and damped (​ω​d​) frequencies: 

 

  

 

Where ​m is the mass of the entire system below (but not including) the spring, ​c is the                  

damping coefficient which is unknown, and ​k is the spring constant. Although the damping              

coefficient is unknown, it is related to the drag force experienced by the bobbing mass ​m​. Since                 

the driving frequency ​ω​, the spring constant ​k​, ​and the bobbing mass ​m are known and measured                 

quantities, we can estimate the damping coefficient from which we may determine the viscosity              

of the fluid. To do this, we measure the acceleration of the vibrating system both above and                 

below the spring with accelerometers and use the methods described in ​Measurements and             

Validation to find the ratio of the bottom (below the spring) acceleration amplitude to the top                

(above the spring) acceleration amplitude. The ratio of acceleration amplitudes must be found for              

a range of frequencies (recommended 15 to 75 Hz) to determine the frequency which gives the                

maximum amplitude ratio (MAR). Once this experimental data is obtained, we then turn to              

mathematical theory and calculate the MAR for a range of viscosity values given our known               

values for ​m and ​k​. We then compare these calculated MARs to our experimentally determined               

MAR until we reach a viscosity that gives a calculated MAR within 1% of the experimentally                

determined MAR. Essentially, the experimental method is guess and check where a range of              

viscosities is swept, and the viscosity that gives a MAR most closely aligned with the               

experimental results is the final answer. 

For Newtonian fluids, it is important that the measured viscosity is close to the reference                

viscosity by at least the same order magnitude, and that the measured viscosity is nearly               

shear-rate independent. If the measured viscosity is not shear-rate independent, the fluid is             

non-Newtonian, and the device currently cannot obtain a reliable measurement of viscosity for             

non-Newtonian fluids. One of our results presented below is for chocolate syrup which is              
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shear-rate dependent and can have a viscosity between 670 and 5000 cP depending on the shear                

rate. Our device reports a viscosity of 1380 cP which is within this range, but it has no way of                    

verifying that this is the correct viscosity given the shear rate, so the result is unreliable. 

 

Measurements and Validation 

There are two distinct phases of data processing, and sample MATLAB code for both are               

included in the ​Code section below. Phase one of processing determines the amplitude ratios of               

the accelerometers, and phase two uses the parameters of the rheometer and the fluid being tested                

to estimate the fluid viscosity.  

In phase one, once you have collected and saved the accelerometer data for a range of                

frequencies, use a two-signal Fourier transform to find the amplitude ratio between            

accelerometers at each driving frequency for which data was collected. We provide example             

code to do this analysis (​First Code​), but it can also be accomplished using any sufficient                

Fourier transform code or method. The speaker used in our particular setup exhibits nonlinear              

behavior at low frequencies, so a Fourier transform is required to isolate the acceleration              

amplitudes at the desired driving frequency ​ω​. Record the ratio of the bottom acceleration              

amplitude to the top acceleration amplitude for each driving frequency. The frequency which             

gives the maximum amplitude ratio (MAR) is the damped natural frequency ​ω​d​ of the system. 

In phase two, plot the amplitude ratios recorded in phase one versus each driving              

frequency for which data was collected. Using the example code provided (​Third Code​), plug in               

the mass and radius of the sphere, the density of the liquid, and the spring constant. Then,                 

choose an initial estimate of the viscosity of the fluid and plot the predicted amplitude ratio using                 

the provided code. In the code provided, it is absolutely essential that the initial estimate of the                 

viscosity is lower than the actual viscosity or the code will not work properly, so be extremely                 

conservative in your viscosity estimate. The code will then iterate and automatically adjust the              

viscosity until it finds a viscosity at which the calculated MAR matches the experimental MAR               

by within 1%. The code will then return the viscosity value corresponding to this case, which is                 

the final viscosity estimate. 

Listed below is a table of results obtained from our testing. The table lists the fluid being                 

tested, our predicted viscosity, and the actual viscosity as measured by a TA Ares G2 Rheometer                

with a cone and plate geometry. A sample graph showing the acceleration ratio data collected for                
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100% glycerine with the predicted response found by our MATLAB code is also shown below.               

After running the code, the viscosity for pure glycerine was estimated to be 940 centipoise,               

which is only 4.4% higher than the viscosity found by the Ares rheometer (900 centipoise). 

 
Fig. 1: Predicted versus experimental results for 100% glycerine solution 

 

 

As is clear from our results above, our device is able to accurately predict the viscosity of                 

Newtonian fluids to within approximately an order of magnitude, with the most accurate results              

being for fluids with relatively low viscosities.  

 

Fluid Predicted Viscosity Actual Viscosity Percent Difference 

100% Glycerine 940 cP 900 cP 4.35% 

90% Glycerine/water 240 cP 291 cP 19.2% 

Chocolate Syrup 1380 cP 870 cP (at 40 s​-1​) 45.3% 

Karo Syrup 4860 cP 8000 cP 48.8% 
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Theory 

Our mathematical model was developed using a paper from Dolfo, Vigué, and Lhuillier about              

the unsteady drag force on a sphere submerged in a fluid.​6 The paper explores the full unsteady                 

Stokes equation for drag on a sphere: 
 

 
 

where ​η​ is viscosity, ​a​ is the sphere radius, and 𝛿 is the viscous penetration depth given by: 
 

 
 

where ​⍴ is the fluid density and ​ω is the driving frequency of the bobbing mass system. The                  

complete mathematics are laid out in the paper cited, but to summarize, the equation for steady                

Stokes drag on a sphere F = 6πaηU where U is the velocity of the sphere must be modified in the                     

unsteady case to account for an additional drag component and an added mass component.  

To analyze the experimental data, we developed a MATLAB program to read CSV files              

of accelerometer data and return the corresponding response amplitudes and their ratio at the              

driving frequency (​Second Code​). We are interested in finding the ratio of the bottom              

acceleration amplitude to the top acceleration amplitude at only the driving frequency ​ω​, which              

is why a Fourier transform is necessary to isolate the amplitudes specifically at the frequency ​ω​.                

The code makes use of the Fast Fourier Transform (FFT) function which converts the              

accelerometer sinusoids from the time domain into the frequency domain. Once this conversion             

has been completed, we can extract the amplitudes of the top and bottom accelerometers at our                

driving frequency and calculate the ratio between them.  

We developed a second MATLAB program to calculate the approximate viscosity of the             

fluid being tested (​Third Code​). This program plots the amplitude ratios at each frequency              

found with the program described above and also uses the drag force equation from the Dolfo et                 

al. paper to plot a predicted amplitude ratio based on input parameters from the user. The                

6 ​Dolfo, G., Vigué, J. & Lhuillier, D. Experimental test of unsteady Stokes’ drag force on a sphere. ​Exp Fluids ​ 61, 97 (2020). 
https://doi.org/10.1007/s00348-020-2936-6  

 

https://doi.org/10.1007/s00348-020-2936-6
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program requires that the user enter the mass and radius of the sphere, the spring constant, and                 

the density of the fluid being used for data collection. The program also requires that the user                 

enter a guess for the viscosity of the liquid, which is used as a starting value for fitting the                   

predicted amplitude ratios to the experimental ratios. As long as the guess is smaller than the                

actual value, the program can successfully estimate the viscosity even if they are orders of               

magnitude apart.  

The program uses the constants provided to calculate and plot the amplitude ratio versus              

frequency of vibration. The original guess for viscosity is used to calculate the predicted              

amplitude ratios for the range of frequencies tested, and the maximum ratio (peak value) of this                

plot and the experimental plot are compared. If they differ by more than one percent, the                

estimated viscosity is increased by 10% of its original value and the calculations described              

previously are repeated until the desired percent difference is reached. The viscosity that             

produced a satisfactory percent difference in maximum amplitude ratios is reported. Because this             

program increases the original guess for viscosity to determine its actual value, it only works if                

the guess is lower than the actual value. So, the user should always pick an estimate that will                  

certainly be lower than the actual value. 

 

Code 

The first code accepts two signals and the driving frequency as inputs, and it returns the                

amplitudes of both acceleration waveforms and the ratio of the bottom acceleration amplitude to              

the top acceleration amplitude. This code has been validated for frequencies between 15 and 100               

Hz. The second code is example code to call the function defined in the first code and read CSV                   

files of accelerometer data. The third code accepts the mass and radius of the sphere, the spring                 

constant, the fluid density, and an initial viscosity guess as inputs, and it returns the final                

viscosity. As mentioned previously, the initial viscosity guess must be lower than the actual              

viscosity for the code to function properly. 

 

First Code 
function​ [Ax,Ay,ratio] = fft_two_signals(x,y,z)  
% Performs FFT Analysis of the acceleration signals 
% and returns their amplitudes Ax, Ay, and ratio. 
% Inputs are signals x and y, and driving frequency z. 
%% User Inputs 
% Sample rate of the Arduino, 1000 corresponds to 115200 Baud 
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Fs = 1000; 
%% Processing Code 
% No code here needs to be changed by the user. 
x=x-mean(x); 
y=y-mean(y); 
T = 1/Fs; 
L=length(x); 
X = fft(x); 
Y = fft(y); 
f = Fs*(0:(L/2))/L; 
P2X = abs(X/L); 
P1X = P2X(1:floor(L/2)+1); 
P1X(2:end-1) = 2*P1X(2:end-1); 
P2Y = abs(Y/L); 
P1Y = P2Y(1:floor(L/2)+1); 
P1Y(2:end-1) = 2*P1Y(2:end-1); 
% Refine the range to driving frequency so that the 
% max function gives the amplitude at the frequency 
% we are interested in: 
P1Y=P1Y(round(z/f(2))-25:round(z/f(2))+25); 
P1X=P1X(round(z/f(2))-25:round(z/f(2))+25); 
[Ay,I2]= max(P1Y); 
f2=f(I2); 
[Ax,I1]= max(P1X); 
f1=f(I1); 
ratio = Ay/Ax; 
% Code used for plotting, visualization 
figure 
plot(f(round(z/f(2))-25:round(z/f(2))+25),P1X) 
xlim([z-5,z+5]) 
hold ​on 
plot(f(round(z/f(2))-25:round(z/f(2))+25),P1Y) 
% Print out answers 
fprintf(​'The amplitude of the base is: %5.4f\n'​,Ax) 
fprintf(​'The amplitude of the mass is: %5.4f\n'​,Ay) 
fprintf(​'The magnification ratio is: %5.4f\n'​,ratio) 
end 

Second Code 
% Create a matrix of acceleration ratios for the two accelerometers used  
%   in the rheometer for each frequency tested 
  
%% User instructions for processor 
% Name your csv files with accelerometer data "15hz.csv" for 15Hz, etc 
    ​% This code is written for frequencies of 15 to 75 Hz with an interval 
    ​% of 5 HZ 
  
% Change the purple text below to the name of the folder your data is in: 
    addpath(​'medium/glycerin_090'​) 
% in this case, 'medium' is the size of the sphere and  
%   'glycerin_100' is the name of the folder containing the data 
  
% If you would like to test different frequencies, simply copy and 
% paste the block of code below, filling the frequency for each [freq] 
  
%       M[freq] = readmatrix('[freq]hz.csv'); 
%       top[freq]=M[freq](:,1); 
%       botx=M[freq](:,2); 
%       [AT[freq],AB[freq],ratio[freq]]=fft_two_signals(top[freq],bot[freq],15); 
  
% You must also edit the matrix in line 96 to include ratio[freq] 
  
% Make sure the frequencies in ratio_mat are in ascending order 
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%% processing code 
% calculate ratio for each frequency where data was collected 
  
M15 = readmatrix(​'15hz.csv'​); 
top15=M15(:,1); 
bot15=M15(:,2); 
[AT15,AB15,ratio15]=fft_two_signals(top15,bot15,15); 
  
M20 = readmatrix(​'20hz.csv'​); 
top20=M20(:,1); 
bot20=M20(:,2); 
[AT20,AB20,ratio20]=fft_two_signals(top20,bot20,20); 
  
M25 = readmatrix(​'25hz.csv'​); 
top25=M25(:,1); 
bot25=M25(:,2); 
[AT25,AB25,ratio25]=fft_two_signals(top25,bot25,25); 
  
M30 = readmatrix(​'30hz.csv'​); 
top30=M30(:,1); 
bot30=M30(:,2); 
[AT30,AB30,ratio30]=fft_two_signals(top30,bot30,30); 
  
M35 = readmatrix(​'35hz.csv'​); 
top35=M35(:,1); 
bot35=M35(:,2); 
[AT35,AB35,ratio35]=fft_two_signals(top35,bot35,35); 
  
M40 = readmatrix(​'40hz.csv'​); 
top40=M40(:,1); 
bot40=M40(:,2); 
[AT40,AB40,ratio40]=fft_two_signals(top40,bot40,40); 
  
M45 = readmatrix(​'45hz.csv'​); 
top45=M45(:,1); 
bot45=M45(:,2); 
[AT45,AB45,ratio45]=fft_two_signals(top45,bot45,45); 
  
M50 = readmatrix(​'50hz.csv'​); 
top50=M50(:,1); 
bot50=M50(:,2); 
[AT50,AB50,ratio50]=fft_two_signals(top50,bot50,50); 
  
M55 = readmatrix(​'55hz.csv'​); 
top55=M55(:,1); 
bot55=M55(:,2); 
[AT55,AB55,ratio55]=fft_two_signals(top55,bot55,55); 
  
M60 = readmatrix(​'60hz.csv'​); 
top60=M60(:,1); 
bot60=M60(:,2); 
[AT60,AB60,ratio60]=fft_two_signals(top60,bot60,60); 
  
M65 = readmatrix(​'65hz.csv'​); 
top65=M65(:,1); 
bot65=M65(:,2); 
[AT65,AB65,ratio65]=fft_two_signals(top65,bot65,65); 
  
M70 = readmatrix(​'70hz.csv'​); 
top70=M70(:,1); 
bot70=M70(:,2); 
[AT70,AB70,ratio70]=fft_two_signals(top70,bot70,70); 
  
M75 = readmatrix(​'75hz.csv'​); 
top75=M75(:,1); 
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bot75=M75(:,2); 
[AT75,AB75,ratio75]=fft_two_signals(top75,bot75,75); 
  
% put ratios for each freq in one matrix 
ratio_mat = [ratio15 ratio20 ratio25 ratio30 ratio35 ratio40 ratio45​... 
    ratio50 ratio55 ratio60 ratio65 ratio70 ratio75]; 
 

Third Code 
% Model rheometer and predict behavior for different liquids 
    ​% plot experimental acceleration ratios 
    ​% use plot to find viscosity that matches experimental data 
  
%% User instructions for rheometer 
    ​% 1. run accelprocessor_foruser for your accelerometer data 
    ​% 2. enter the mass of the system below the spring below 
    mass = 29.63*10^-3; ​% kg  
    ​% 3. enter the radius of the sphere below 
    radius = 0.0127; ​%m 
    ​% 0.015; large 
    ​% 0.0127 medium 
    ​% 0.009 small 
    ​% 4. enter the spring constant of the spring 
    k = 1050.76; ​% Nm 
    ​% 5. enter the density of the fluid 
    density = 1231; ​% kg/m^3 
    ​% 6. enter your guess for the viscosity of the fluid 
    eta = 100; ​% cP 
    ​% 7. enter the ratio_mat data obtained from accelprocessor_foruser.m 
    ratio_mat = []; 
%% processing code 
  
% DEFINE CONSTANTS IN FORCE EQUATION (FROM DOLFO PAPER) 
% convert viscosity from cP to Pa*s 
eta_guess = eta*10^-3; 
% create matrix for range of omega values 
omega = linspace(80,500,800);  
% viscous penetration depth (m) 
delta = sqrt(2*eta_guess./(density.*omega));  
% calculate damping coefficient, Nm/s 
c = -6*pi*eta_guess*radius.*(1+radius./delta); 
% natural frequency, rad/s 
omega_n = sqrt(k/mass); 
% calculate viscous damping factor 
zeta = c./(2*mass*omega_n);  
% ratio of frequency to natural frequency 
r = omega/omega_n; 
% set up matrix to store calculated acceleration ratios 
Accel_ratio = []; 
% calculate acceleration ratios at every frequency 
for​ i = 1:length(omega) 
    Accel_ratio(i) = 1/sqrt((1-r(i)^2)^2+(2*zeta(i)*r(i))^2); 
end 
  
% set up matrix of frequencies at which experimental data was collected 
omega_exp = 15:5:75; 
omega_exp = 2*pi*omega_exp; 
  
%% calculate best approximation of viscosity 
% comment this out if you want to brute force the approximation 
  
% find maximum acceleration ratio in exp. data 
max_A = max(ratio_mat); 
% find maximum acceleration ratio in estimated calculations 
A_approx = max(Accel_ratio);  
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% find % difference between maximum accel ratios 
percent_dif_w = abs((max_A-A_approx))/max_A;  
  
% define the increment that the approximate viscosity should increase by 
%   to be 10% of its estimated value 
increment = 0.1*eta_guess; ​% this can be adjust by changing the fraction 
  
% continue to increase estimated viscosity until max amplitude give % 
%   difference of less than 1 
while​ percent_dif_w > 0.01 
    eta_guess = eta_guess + increment; ​% increase estimate 
    ​% recalculate constants 
    delta = sqrt(2*eta_guess./(density.*omega));  
    c = -6*pi*eta_guess*radius.*(1+radius./delta); 
    zeta = c./(2*mass*omega_n); 
    ​for​ i = 1:length(omega) 
        Accel_ratio(i) = 1/sqrt((1-r(i)^2)^2+(2*zeta(i)*r(i))^2); 
    ​end 
    [A_approx, omegan_approx] = max(Accel_ratio); ​% recalculate max accel ratio 
    percent_dif_w = abs((max_A-A_approx))/max_A; ​% recalculate % dif 
end  
  
  
%% Plot experimental and calculated acceleration ratios 
figure 
hold ​on 
  
% plot experimental and calculated accel ratios vs frequency 
scatter(omega_exp, ratio_mat) 
plot(omega, Accel_ratio) 
  
xlabel(​'Omega (rad/s)'​,​'fontsize'​, 16) 
ylabel(​'Acceleration Ratio'​,​'fontsize'​, 16) 
title(​'Expected vs Calculated Magnification'​,​'fontsize'​,18) 
xlim([80 500]) 
%ylim([0 10]) 
legend(​'Experimental response'​,​'Predicted response'​)  
  
% print calculated viscosity 
visc = [​'Viscosity = '​, num2str(eta_guess*10^3)]; 
disp(visc) 
 
 

 

  

 



12 

Diagrams and Visuals 

 
Fig. 2: Schematic diagram of the Rheometer device 

 

Figure 2 shows the components of the vibrating mass system and indicates what setup              

parameters we varied in our testing. These parameters were frequency, spring constant, and the              

size of our sphere. Of these, we explored springs with k constants of ​6 (lbs/in) and 10 (lbs/in),                  

sphere radii of 1.5 cm and 0.9 cm, and frequencies ranging from 15 Hz to 75 Hz.  

 
                  Fig. 3: Wiring Diagram                 Fig. 4: Final Setup 
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Further diagrams, photos, materials needed and instructions on device assembly are available in             

our instructables post. 

 

Future Steps 

The way that this experiment is designed requires that the fluid is Newtonian. That is               

because as the driving frequency changes, the shear rate also changes. The data collection              

process requires that viscosity be independent of driving frequency and, as a consequence, must              

also be independent of shear rate. It may be useful going forward to consider a set of experiments                  

and dynamic models that account for the shear-rate dependence of non-Newtonian fluids in order              

to characterize the power-law behavior. 

Furthermore, the current computer program requires that the user input an initial guess             

for viscosity that is lower than the error-reducing value found through the sweep. Future work               

could include a more sophisticated search algorithm for finding an error-reducing viscosity that             

can search in multiple directions more efficiently than a fixed resolution sweep, and could take               

into account the entire shape of the response curve rather than just the maximum amplitude ratio. 

 


