
Project: Vulcan

A Model Rocketry Test Stand
Utilizing the
Arduino Mega2560
Microcontroller

Robert W. Austin
NAR 47533

Copyrighted 2024

2 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Project: Vulcan © 2024
by Robert W. Austin is licensed under CC BY-SA 4.0.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

This Project Manual was created using LibreOffice
Writer Version 24.8. The LibreOffice logo was created
by Christoph Noack - CC BY-SA 3.0,
https://wiki.documentfoundation.org/File:LibreOffice-
Initial-Artwork-Logo.svg,
https://commons.wikimedia.org/w/index.php?
curid=34369081

The Arduino code was created using the Arduino IDE

The cover drawing is a graphical representation of the Vulcan statue located in Birmingham,
Alabama. You can find additional information on Vulcan at
https://en.wikipedia.org/wiki/Vulcan_statue

A Quick Note about the Products Mentioned

Any product that you see mentioned in this manual is listed because I bought it, use it, and found
it did the job I asked of it. No person or company sent me anything. I do not receive any type of
compensation if you buy anything I mention here.

3 | P a g e

https://en.wikipedia.org/wiki/Vulcan_statue

Project Vulcan - A Model Rocket Motor Test Stand

The Austin Aerospace
Educational Network

The Austin Aerospace Educational Network (AAEN) is a network of sites that is designed to
provide you with the resources you need to perform a wide variety of projects using model
rocketry. Model rocketry is a wonderful hobby, a great educational tool and just a world of fun.
Model rocketry can provide a window that allows you to looking towards the future, be active in
present day events and peer back into history and learn from those who have gone before us.

If you like working with technology, model rocketry and computers are made for each other.
You can use software to design your own model rocket and make sure it is stable so it will fly
straight and true. You can create simulations of how your model rocket will perform using
different motor or fin configurations. You can conduct real research projects.

How about electronics? Thanks to small micro-controllers like the Arduino and ESP 32 as well
as single board computers like the Raspberry Pi, anyone can add real electronics and avionics to
their rocketry projects.

You can incorporate 3D printing to create parts that currently don’t exist or to bring old designs
long since removed from store shelves back to life. This offers the rocketeer a way to create
components for their rockets and support systems that couldn’t have been imagined even 10
years ago.

But perhaps the best news is that we have only begun to scratch the surface of the hobby, as there
is so much more that you can do with model rocketry. Our intention is to provide you with a full
array of information on the wide and wonderful world of model rocketry, what I consider the
most fascinating hobby on the planet!

The Rocketry Research Journal
Our main site is the Rocketry Research Journal. This blog and web site can be found at
https://rocketryjournal.wordpress.com. Below we list what you can expect to find on this site.
There is no charge for any of the information or software you find there. Please feel free to
download and share our reports, software, technical manuals, etc.

Here’s What Is on the Site
The web site provides a portal to a number of the resources we have available. They include:

 The Rocketry Research Journal blog features articles on recent projects, news from the
world of rocketry (both full size and miniature) and more. Check back frequently for the
latest updates.

 View our Tech Reports. At the time of this report there a total of eleven reports available.
They cover the basics of model rocketry, an introduction to doing research, single station
altitude tracking, two station altitude tracking, how to adjust your electronic altimeter to
account for temperature changes, how to use a spreadsheet to calculate altitude and tips
on getting started using an Arduino micro-controller, plus a while lot more.

4 | P a g e

https://rocketryjournal.wordpress.com/

Project Vulcan - A Model Rocket Motor Test Stand

 We have a section that focuses on the Arduino micro-controller and how it can be used in
model rocketry.

 We have a section set aside for 3D printing. Currently we have an article on using 3D
printing to build a Dyna-Soar Titan II model rocket.

 There is a page for Model Plans. There are two plans currently available, but more are on
the way.

 The Austin Aerospace Education Network (AAEN) has been developing the open source
Flight Logs Database Program. The software can track your rockets from initial
construction, then track all flights and record any maintenance needed or performed. It
can calculate altitude, record any 3D prints used on the model, store the plans and even
report CATOs to the MESS (Malfunctioning Engine Statistical Survey) site. If you are a
NAR member and looking at completing your NARTREK submissions for the Bronze,
Silver or Gold levels, it can help with that as well. There’s even more the software can do
for you. Read more about it on the Flight Logs Software page.

 Our other major software project is the Rocketry Research Assistant (RRA). This
database is designed to assist you when using rocketry in research and engineering
projects. The RRA is being developed using LibreOffice Base and the HSQL database
engine. This means that the program will work on a number of computer systems
including Windows, Mac, and Linux - including the Raspberry Pi. This also will make it
easier for you, if desired, to modify the software to meet your specific needs. The
software is in its early development phase, so look for a lot more updates and expansions
in the future.

Our Sister Sites
We have a number of other sites that you can visit for specific rocketry projects or activities.

Source Forge Open Source Software Repository
 A Listing of All of Our Software

https://sourceforge.net/u/austinaerospace

3D Printing File Repositories
 Thingiverse

https://www.thingiverse.com/austin_aerospace_education/designs

CAD Files
 TinkerCAD

https://www.tinkercad.com/users/kGt9Dmmc88b

Project Instruction/Tutorials
 Instructables

https://www.instructables.com/member/Austin_Aerospace_Education

YouTube
 Rocketry Research Journal Video Channel

https://www.youtube.com/@AustinAerospace

5 | P a g e

https://www.youtube.com/@AustinAerospace
https://www.instructables.com/member/Austin_Aerospace_Education/instructables/
https://www.tinkercad.com/users/kGt9Dmmc88b
https://www.thingiverse.com/austin_aerospace_education/designs
https://sourceforge.net/u/austinaerospace/profile/

Project Vulcan - A Model Rocket Motor Test Stand

Other Project Manuals Available from AAEN

The Arduino Launch Control System
Our first Project Manual is on our Arduino Launch Control System. This
manual offers an introduction to the Arduino micro-controller and
electronics. The manual takes you step-by-step through the process of design,
breadboard, code creation and making the physical system. In addition to the
instructional component the appendix contains drawings and schematics of
the system, the Nano pin assignments, the complete source code listing and a
listing of the parts needed to create the project.

164 pages. Adobe Acrobat (pdf) format.

Arduino-Primary Avionics Module
The A-PAM is designed as a foundational component of an overall avionics
system. As such, the A-PAM by itself really doesn’t do much. It needs to be
connected to another payload module or sensor array to have data to collect.
What the A-PAM does is supply power for your payload system, provide a
micro-controller to conduct sensor readings and other task, utilizes a
microSD card to record the data, and incorporates a RGB LED lamp that can
be used to provide status messages in the field, when not connected to a
computer. With the foundation provided for an electronic avionics system,
the rest is left to your imagination.

66 pages. Adobe Acrobat (pdf) format.

Project: Icarus
Project: Icarus is a proof of concept that brings several projects together into
a single model rocketry research launch vehicle. This specific project
includes the A-PAM avionics payload (listed above), temperature sensors
along the body, and a video camera.

The sensors record the heat inside the body tube as the solid rocket motor
burns and fires the ejection charge. They provide data on the temperature
outside the motor mount, the temperature above the motor mount but below
the flameproof recovery wadding and the area where the parachute is housed,
just above the wadding.

112 pages. Adobe Acrobat (pdf) format.

6 | P a g e

https://rocketryjournal.files.wordpress.com/2022/12/arduino-lcs-pm.jpg
https://rocketryjournal.files.wordpress.com/2022/12/a-pam-pm-1.jpg
https://rocketryjournal.files.wordpress.com/2022/12/project-icarus-pm.jpg

Project Vulcan - A Model Rocket Motor Test Stand

Rocketry Research Assistant-Part 1
The Rocketry Research Assistant Database Project is designed to get you
started in understanding, designing and creating databases. To make you
aware of how databases work, to help you understand how they can be
helpful in your research projects and to let you know that you can develop
basic database programs and skills that can be immensely beneficial to you
and your team.

With this release you will see the start of building the foundation for this
database. It includes three basic forms (Projects, Team Members and Tasks)
and the initial foundational tables. Our SourceForge download includes a
copy of our Tech Report TR-11 “Introduction to Database Design” along
with the accompanying Project Manual, “Creating the Rocketry Research Assistant-Part 1”. The
Project Manual takes you step-by-step through the design and creation of the database. The
Project Manual has a number of screen shots and a detailed appendix. If you have an interest in
database development this is a great introductory package.

79 pages. Adobe Acrobat (pdf) format.

The Olympus Project
This project is a multipart engineering project that is designed to introduce
the concept of building a payload model rocket kit, creating a custom
designed electronic payload, and tracking your progress using the Rocketry
Research Assistant software. We want to show that anyone can create an
interesting rocketry science/engineering project using off the shelf rocketry
kits and electronic components that are readily available.

The goal is to develop a system that can be used by high school students. It
involves proven rocket designs that can be flown on school yards. It needs
to be small, much smaller than the high power rockets that you typically
see. It meant fitting everything into a body tube with a diameter of about
42mm (1.65 inches). This allows the use of “D” or “E” powered black powder motors. No
special HPR certification is required to purchase or use these motors. No large dry lake bed
required to fly these rockets.

132 pages. Adobe Acrobat (pdf) format.

7 | P a g e

https://rocketryjournal.files.wordpress.com/2022/12/project-icarus-pm.jpg

Project Vulcan - A Model Rocket Motor Test Stand

Table of Contents
01 Introduction...15

What is a Test Stand?...15

The Basic Layout of the Project...15

Looking at What Already Exists..16

Before we start our project...17

We Are All Learning... 17

02 Rocket Motor Basics... 18

Typical Engine Sizes..18

The Engine Coding System... 19

Total Impulse... 19

Average Thrust...20

Delay Time.. 20

Thrust Curves...20

Rocket Motor Design...23

03 Rocket Motor Test Stands..25

Our Test Stand...26

04 Designing the Test Stand..28

Research...28

Initial Designs.. 29

05 Components...32

The Test Stand Electrical Components..32

Elegoo Mega2560.. 32

Load Cell & Amplifier...33

MicroSD Card Module.. 33

LEDs.. 33

Piezo Buzzer..34

BME280 Environmental Sensor..34

Real Time Clock.. 34

Firing Relay...34

Resistors...34

AA Battery Holder...34

8 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The Remote Head Electrical Components...35

LED Clock... 35

LCD Screen..35

Function Buttons..35

DB15 Connectors and Cable..36

Other Hardware..36

Tools and Supplies...37

06 Writing Code... 38

Documenting the Code.. 38

Layout.. 38

Title Block...39

Header Blocks..41

Subsection Dividers... 41

Comments.. 42

07 Libraries, Declarations, and Setup Code..43

Libraries... 43

Declarations...44

void setup()..45

Using Functions... 45

Initializing Serial Port.. 46

Splash Screen... 47

Setup Display Screens... 48

LED & Buzzer Pins... 48

Setting Up the Real Time Clock (RTC)...48

Checking and Adjusting the Date & Time...48

Setup the MicroSD Card Module.. 49

Initialization of the BME280 Weather Sensor...50

Testing the HX711 Load Cell Amplifier...51

Initialization of the Fire Control System...51

All Systems Initialized...51

08 The Loop() Function...52

void loop() function...52

09 LEDs, Buzzers, Clocks and Displays...54

The RGB_LED_Lamp_Settings Tab...54

9 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

RGB Colors..54

LED Lamp States...54

10 Writing Data to a SD Card.. 56

Information Log... 56

Opening and Writing the File.. 56

Error Reporting.. 56

Motor Data Log... 57

System Log..58

11 Motor Prep Sequences..59

Getting Started... 59

Test Preparation... 59

Motor Preparation Information.. 59

Motor Casing Information...61

Impulse Information.. 62

Average Thrust...64

Delay Time.. 64

Propellant Data.. 64

Ignition Time...65

Calculating Data Collection Time...65

12 Motor Load Sequence...67

Getting Started... 67

Motor Load Checklist Function... 67

Motor Mount Checklist Function..68

Load Cell Calibration Decision... 68

Clear Test Area.. 69

Setting Up The Load Cell..69

13 Fire Sequence..70

Transition to the Fire Sequence...70

Fire Control Sequence... 70

Waiting for the Fire Button to be Pressed..70

Fire Button Pressed.. 71

ABORT.. 72

Abort Recycle..72

Shutdown Period..72

10 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Wait Period..72

All Clear...73

Post Test Data.. 74

Followup Testing... 74

14 Test Data.. 75

Data Collection..75

Data Collection Time...76

Code Review Conclusion...76

15 Building the Test Stand Base...77

Base..78

Warning Light Housings..78

Wiring the Lamps.. 79

Adjustable Legs...79

Load Cell..80

Load Cell Location & installation..80

Motor Mount..81

Base Complete... 82

16 Building the Motor Mounts...83

Printed Motor Mount Centering Rings..83

Assembling the Motor Mounts..84

17 Designing and Building the Electronics Housing...86

A Step at a Time..86

Individual Component Mounts..87

The Jigsaw Puzzle Design... 87

Back to Tinkercad.. 88

3D Printing...89

Installing the Electrical Components... 90

Wiring.. 90

Battery Pack and Continuity Lamp..91

Warning Light Wiring..92

Platform Levels..92

18 Building the Remote Head...93

Version 1..93

Versions 2 and 3.. 93

11 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Version 4..94

Printing the Remote Head..94

Wiring the Remote Head... 95

The DB15 Connector... 95

The Cover.. 95

Connecting the Cover and Base...96

19 Assembling the Test Stand... 97

Setup Area..97

Connections... 97

Motors and Motor Mounts... 98

Accessories..98

20 Conducting a Motor Test...99

Mega2560 Boot..99

Data Entry Process...99

Pre-fire Process.. 101

Motor Loading Checklist... 101

Motor Mount Checklist..101

Test Stand Calibration... 101

Clear Test Stand Area.. 102

Motor Test Fire Process... 102

Abort.. 102

Motor Firing...103

Post Motor Test Firing...103

CATO...103

Case Mass..103

Comments.. 103

Test Complete.. 103

21 Tactics to Improve the Test Stand...105

Hardware Updates..105

Software Updates and Changes... 105

Make The Project Yours.. 106

22 Conclusion...107

A1 System Drawings.. 110

A2 MEGA 2560 Pin Assignments...113

12 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

A3 Complete Code Listing..114

Test_Stand_V1.0.ino... 114

Buzzer_Tones.ino..120

Calibrate_Load_Cell.ino..121

Clock_LED.ino.. 125

Fire_Abort_Recycle.ino...125

Fire_Abort_Sequence.ino..126

Fire_Control_Sequence.ino... 127

Fire_Data_Collection.ino...130

Fire_Shutdown_Period.ino..132

Fire_Weather.ino... 134

Initialization_Pass.ino..135

LCD_Date_Time.ino... 136

Motor_Load_Sequence.ino..137

Motor_Mount_Sequence.ino... 138

Motor_Prep_And_Test.ino..139

Motor_Prep_Avg_Thrust.ino...140

Motor_Prep_Calc_Time.ino..141

Motor_Prep_Casing.ino... 141

Motor_Prep_Delay_Time.ino.. 144

Motor_Prep_Ignition_Time.ino... 145

Motor_Prep_Info.ino... 145

Motor_Prep_Propellant.ino..148

Motor_Prep_Scale.ino... 150

Motor_Prep_Total_Impulse.ino...150

Motor_Recalibration_Sequence.ino...152

Motor_Test_Clear_Area.ino.. 153

Motor_Test_Tare.ino...154

Post_Test_Data_Entry.ino...155

RGB_LED_Lamp_Settings.ino...157

Sensor_Data_BME280.ino..159

Serial_Monitor_Date_Time.ino... 159

Serial_Monitor_Splash_Screen.ino...159

Setup_BME280_Sensor.ino...160

13 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Setup_Date_Time_Check.ino.. 161

Setup_Date_Time_Entry.ino... 163

Setup_Fire_Control_System.ino..166

Setup_HX711.ino.. 167

Setup_LCD_I2C.ino..168

Setup_LED_Display.ino.. 169

Setup_MicroSD_Card.ino..169

Setup_Real_Time_Clock.ino... 172

Strobe_LED_Bulb.ino... 173

Write_Info_Data_To_SD_Card.ino...173

Write_Motor_Data_To_SD_Card.ino...174

Write_Sys_Data_To_SD_Card.ino..175

Compilation Notes - Arduino Mega2560..176

A4 Parts Listing... 177

Electronics... 177

A5 References... 180

A6 Project Links..182

14 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

01
Introduction
Our first project, the Arduino Launch Control System, was a part of the ground support
equipment needed for launching model rockets. The next two projects focused on rocket avionics
systems, with Project: Icarus looking at temperature sensors and The Olympus Project working
with altimeter and roll rate/g-force sensors. All of these projects made use of the Arduino Nano
microcontroller.

This project will be a bit different. First, we are going back to the area of ground support
equipment, this time building a model rocket motor test stand. However, we will not be using the
Arduino Nano but instead will build it around the Arduino Mega2560 board.

What is a Test Stand?
So what is a model rocket motor test stand? Well, at its core it is a measuring device. It simply
measures how much thrust a motor produces. It does this through the use of a load cell – the
same type of electronic device that is in your weight scale. With this test stand the motor is
placed in a downward position (with the motor exhaust coming out of the top). When the motor
is ignited it presses down on the load-cell. That creates a small change in the electrical current
and that change is measured and recorded. The load-cell does the same thing when you step on a
scale to weigh yourself. There is a change in the current and a calculation is performed to display
your weight.

For this project our load-cell can measure up to 5 kilograms of force. This will be more than
adequate for our Estes black powder A-E motors. For more powerful motors you will need a
larger capacity load-cell.

The Basic Layout of the Project
The project uses an Arduino Mega2560 board to process everything, and there is a lot going on.
This Test Stand does a lot more than just provide the data to create a thrust curve. Since I always
try to look at these projects from an educational/research perspective, we have added some
additional components into the system. These items were added based on previous test stand
projects and research papers that we examined. We also looked at the National Association of
Rocketry’s (NAR) Standards and Testing (S&T) process as outlined on the NAR web site
(https://www.nar.org/nar-motor-testing). The result is the following items included in this
project:

• Environmental Sensor
Detects temperature, humidity and barometric pressure

• Data Storage
Three separate data files are stored on a MicroSD card. They include;
◦ an Information Log that records the motor and test location information

15 | P a g e

https://www.nar.org/nar-motor-testing

Project Vulcan - A Model Rocket Motor Test Stand

◦ a System Log that records the status of the test stand system, including time stamps
when various activities occurred.

◦ a Motor Log that provides a readout of the load cell in Newtons, total impulse in
Newtons, and each entry is timed stamped.

• Use of the Serial Monitor to both monitor the test stand systems and to input log
information.

• The software begins data collection on ignition and will continue recording data until one
second past the end of the delay charge.

We also wanted the system to have some “coolness” to it. In that respect, it includes the
following:

• 7-segment LED clock
• 5-second countdown
• Warning lamps and buzzer
• LCD screen with general messaging

Looking at What Already Exists
As noted above I looked at the NAR S&T procedures and requirements as I developed this test
stand. There is a major differences between the two stands and that involves the number of
samples the test stand processes per second. This stand uses a common load-cell I purchased off
of Amazon, with an amplifier from Sparkfun. This combination can record 80 samples per
second. The NAR test stand can perform 1000 samples per second (or more) for motors with a
burn time of less than 1-second, and at least 500 samples per second for all other motors1.

Another difference is that the test stands used by the NAR can place the motor in a horizontal
position or a vertical position. My test stand has the motor in a vertical position thrusting
downward. Later I’ll explain why the position makes a difference.

So is our test stand worthless? Absolutely not! The NAR Test Stand is used to validate and
certify motors. As certification is the primary purpose, all the motors are tested under identical
conditions. The S&T manual states, “Motors, fuel grains, oxidizer tanks etc. shall be kept within
the environmental conditions specified by NFPA 1125 for testing. For motors, these conditions
are a temperature of 20oC + 5oC.”2

It is the certified motors that we intend to test in our stand. The 80 samples per second collection
is more than adequate to help determine accurate thrust curves for simulations based on local
conditions. If conducting research our test stand can be used to see how various temperature and
humidity changes affect the motors. There are a number of ways you can use this stand to help
create a more accurate estimate of exactly how the motor will perform, resulting in more
accurate simulations. This additional data can help you obtain better performance from your
rocket.

1 NAR Standards and Testing Committee Motor Testing Manual Version 1.5. July 1, 2011. Section 8.5 “Test
Stand Requirements”, item 8.5.2.

2 NAR Standards and Testing Committee Motor Testing Manual Version 1.5. July 1, 2011. Section 8.3 “Motor
Testing Process”, item 8.3.3.

16 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Finally, this project builds on two of our previous projects. Many of the components and code
from the Arduino Launch Control System were either utilized in the test stand or were upgraded
from their original use as outlined in the LCS Project Manual. From Project: Icarus I reused the
code for the RGB LED bulbs and the MicroSD card module.

Before we start our project
Before I get into the building of the Test Stand, I want to provide you with some basic
information. I'll discuss the basics of model rocket motors and how they work, what a thrust
curve is and how it is created, and a bit more detail about rocket motor test stands and how they
are used for sounding rockets and space launch vehicles.

This manual does not require the user to have read or created any of the previous projects. Each
step of the project will be explained so that the user can successfully create the test stand project.

Because of this there is some overlap between this project and our other project manuals that I
have released. Therefore if you have built or read our other manuals, you may find that some
material is duplicated. When you encounter these areas, you can simply ignore the duplication as
long as you feel confident in the information being presented.

We Are All Learning
If you have read any of our previous Project Manuals, you will know that I am learning this
"new-to-me" aspect of the hobby called electronics. I am creating these manuals so that you can
learn from me, as I make mistakes and then add changes during the development of the test
stand. The more experienced electronic experts reading this may cringe at some of things I am
doing, as they know better, easier or more robust ways of accomplishing the same goal. That’s
fine, because the goal of these Project Manuals is not to create a perfect project, but rather to
learn new skills and increase our knowledge in the topic of electronics. We want to have a
working project when we are done, but we also want this to be fun and enjoyable. If its not, you
won’t learn anything.

17 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

02
Rocket Motor Basics
The basic black powder model rocket engine is composed of five sections. These are identified in
the graphic below;

The typical model rocket motor is made of
a paper casing with clay caps on each end
of the motor. The rear of the motor has a
nozzle molded from clay. The nozzle
opens into the propellant. The electrical
igniter is placed into the nozzle and
pushed forward until it touches the
propellant.

The most popular and inexpensive
propellant on the market today is black powder. When this propellant is ignited, it burns from the
back of the engine and moves to the front, expelling the hot gases out through the nozzle and
thrusting the model into the air.

The next section in the motor is the tracking smoke delay element. When the propellant has
finished burning, the model is still moving rapidly through the air. The delay element allows the
model to continue gaining altitude and allows the aerodynamic force of drag to slow the model
down. During this time, tracking smoke is released through the nozzle, making it easier to see
exactly where the model is located in the sky.

When the tracking smoke has been totally used up, a small charge called an ejection charge is
fired, pushing off the clay end cap. The hot gases from this charge enter the body tube of the
model and expand rapidly. This rapid expansion of the ejection charge gases pushes off the nose
cone of the model, deploying the recovery device.

Typical Engine Sizes
Solid model rocket motors come in a number of sizes. As a general rule the larger the
diameter/length of the motor, the more thrust the rocket will be able to produce. The chart below
shows some common diameters, lengths and general power range.

Diameter Length Type

13mm 44mm Mini Motors

18mm 70mm Standard Motors

24mm 70mm and 95mm D and E Motors

29mm and 38mm 114mm + Mid-power Motors

18 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The Engine Coding System
All model rocket engines, regardless of the
manufacturer, utilize the same coding system. This
allows you to know the basic performance
capabilities of the engine. That coding system is
shown in the graphic on the right.

Total Impulse
The following chart shows the total impulse classification for each letter code.

Code Newton-Seconds

1/4A 0.000 - 0.625
1/2A 0.625 – 1.250

A 1.250 – 2.500
B 2.250 – 5.000
C 5.000 – 10.000
D 10.000 – 20.000
E 20.000 – 40.000
F 40.000 - 80.000
G 80.000 – 160.000

You will notice two things in this chart:
• Each time you increase the letter, the maximum total impulse limit of the engine doubles.

This means that a ‘C’ engine has twice the total impulse of a ‘B’ engine; a ‘B’ engine has
twice the total impulse of an ‘A’ engine, and so on.

• The total impulse is given as a range. Looking at the sample motor in the graphic above,
an “A” engine has a total impulse of between 1.250 to 2.500 Newton-seconds. One of the
benefits of a test stand is that you can test several motors from the same production lot
and see how closely they actually perform to the listed classification. This can help make
your simulations more accurate as opposed to using the standard figures given for a
motor.

What’s a Newton?
When you talk about the thrust of a model rocket motor, it is usually reported in "Newtons" (you
may also see it referred to as "pounds force", especially in older documents). The definition of a
Newton is the force needed to accelerate one kilogram of mass at the rate of one meter per
second squared. In the formula below N = newton, kg = kilogram, m = meter, and s = second.

 1N=1
kg×m
s2

19 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

You will also see the term "Newton-seconds" (the other older term is "pound-seconds"). This is a
standard unit of impulse and is simply a one-newton force applied for one second. The newton is
named after Sir Isaac Newton in recognition of his work on classical mechanics.

Average Thrust
The first number following the letter displays the average thrust in newtons. Average thrust is
determined by dividing the total thrust by the thrust’s duration. The formula below shows how to
calculate average thrust where Ta = average thrust, Td = thrust duration (in seconds), and Tt =
total thrust.

T a=
T t
Td

This becomes important for you to be able to determine what motor you want to use in your
model. For example both the C5-3 and the C11-3 have the same total impulse. However, the C11
has a higher average thrust, indicating that it has a stronger thrust than the C5-3. However, the
C11 has a much shorter burn time than the C5. Based on the rocket you are looking to fly, you
need to decide if it is better to use the higher thrust/shorter duration motor, or the lower
thrust/longer duration motor.

Delay Time
The last number on the engine casing is the delay time in seconds. This time starts at the
completion of the propellant burn and continues until the ejection charge fires. This delay allows
the rocket to continue to coast upward towards apogee. The end of the delay time should ideally
occur at apogee. If the delay time is too short, the recovery system will deploy too soon, while
the rocket is moving at speed, and can damage the recovery system. If the delay is too long, the
rocket can arc over and pick up speed as it heads back to earth. The result is the same problem;
the recovery system deploys at a greater speed than intended. Another outcome may be that the
rocket is too close to the ground to allow the recovery system to fully deploy. The worst case
occurs when the delay is too long and the rocket impacts the ground prior to the ejection charge
being fired.

Some motors will have a “0” for their delay time. This indicates that the motor has no delay or
ejection charge. These are booster motors and are designed to burn through at the top of the
motor, sending hot propellant fragments into the stage above igniting the engine in the next
stage. These motors should never be used in a single stage rocket, but only in booster stages.

Thrust Curves
A thrust curve is a visual representation of the motor burn. The X axis displays the time, while
the Y axis displays the thrust in newtons. Below is the thrust curve of the Estes D12 motor.
When using the test stand, the sensor results will allow you to produce a graph similar to the one
below.

20 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

This is done by importing the numbers into a spreadsheet and creating a line graph. In the graph
below, several items have been labeled. This includes total impulse, maximum thrust, average
thrust, and propellant burnout.

The total impulse is total amount of thrust produced by the motor during the total duration of the
burn. This total impulse is used to determine the class of the motor. For this reason, the letter
designation is a range for the total impulse of the motor and not a specific number of newtons
For a D motor, the total impulse will be between 10.001–20.000 newtons.

The maximum thrust is just under 30 newtons. This is the maximum amount of force produced
by the motor. In the thrust curve for D12 motor above, you can see where this peak occurs early
in the burn then drops and levels off for the remainder of the burn. While this is typical of most
model rocket motors, it is not true for all motors. Different curves are generated based on the
motor design and the propellant being used.

While we discussed average thrust above, the average thrust that is displayed on your solid
rocket motor has a slight variation from what you may expect. Here it is the average amount of
thrust that is produced during a normalized burn time, not the entire burn time. The usefulness of
the average thrust figure can vary depending on the thrust curve of the motor.

A normalized burn time is based on the NFPA (National Fire Protection Agency) Standard 1125.
In a normalized burn time you first need to determine 5% of the maximum thrust. In our D12
motor, the maximum thrust is about 30 newtons, so 5% of 30 newtons is 1.5 newtons. Looking at
the thrust curve, for a normalized burn time we don’t start the clock until the thrust exceeds 1.5
newtons. We then stop the clock as soon as the thrust falls below 1.5 newtons. By using this
method we can get a better indication of useful thrust. It is important to remember that when you
look at the certification markings on a solid rocket motor, the average thrust is calculated based
on the normalized burn time, while the total impulse is based on the entire burn time.

21 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

There are two other measurements that can be very useful when determining if a motor will meet
the needs of the rocket and its mission. These include initial thrust and specific impulse. Initial
thrust is defined as the average amount of thrust the motor develops for the first ½ second of the
burn. This can be helpful in determining just how much weight the motor can lift. This
measurement is not something that you will typically find in any of the motor documentation, but
it is something that you can calculate once you do your own tests on the test stand.

Specific Impulse (ISP) is a measurement of the motor’s efficiency. It is calculated by dividing the
total impulse by the weight of the propellant. The higher the specific impulse, the more impulse
you get for the propellant weight. If you have two motors that develop the same total impulse,
but with the first motor the weight of the propellant is half that of the opposing motor, the lighter
weight motor can lift more total weight. Consider the following as a simplified example:

Two motors have a total impulse of 20 newton-seconds and can lift a maximum weight of
400 grams. Both are used in the same rocket that weighs 350 grams not including motor and
payload.

◦ Motor A has a propellant weight of 20 grams, resulting in an ISP of 1 second.
◦ Motor B has a propellant weight of 30 grams, resulting in an ISP of 0.667 seconds.
◦ Due to the lighter weight of Motor A, the payload can weigh up to 30 grams.
◦ Due to the heavier weight of Motor B, the payload can not weigh more than 20

grams.

22 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Rocket Motor Design
In the example above, we looked at the thrust curve for an Estes D12 motor. Below are four
additional thrust curves from four different motors.

Looking at the five thrust curves, you can see that they are all unique in their shape. Even the
two B4 motors have very different thrust curves. The reason behind such variations and the cause
of these differences all comes down to motor design.

Rocket motors, whether on full size rockets like the Falcon 9, or model rockets like the Alpha,
are all designed and made to fit a specific need or requirement. Consider a motor like the B14
that has a huge kick that is delivered nearly all at once. Such a motor would be good for booster
stages and high acceleration studies.

So how do they get the different thrust patterns? For model rockets it all comes down to the
design of the propellant.

Most model rockets are using black powder (as you get into mid and high power rocketry that
changes, but let’s stick with black powder for now). Most are using the same nozzle design. So
what changes is the pattern or geometry of the propellant grain.

To get the propellant to burn faster, you need more surface area exposed. In our model rocket
motors this is done by creating a core hole in the center of the propellant. On most model rocket
motors this core doesn’t go very deep. The faster burning around the core gives the motor its

23 | P a g e

Quest A4 Quest B4

Estes B4 Estes E30

Project Vulcan - A Model Rocket Motor Test Stand

initial kick. As the propellant continues to burn the core burns away and transitions to a flat, end
burning operation. This does not burn as fast, so the thrust drops and gives you the longer, flat
portion of the thrust curve

Motor awaiting ignition

Motor ignited, begins burn around central core

Motor continues to burn around central core, begins
transition to flat bottom burn

Central core burned away, now solely burning from flat
bottom

24 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

03
Rocket Motor Test Stands
Rocket motor test stands have been around almost as long as rocket motors. As stated in the very
name, a test stand is used to test the performance of the rocket motor. Test stands used by NASA
are typically very large as they are testing very powerful rocket engines. In the picture below you
can see the A-1 Test Stand at the Stennis Space Center testing one of the Space Launch System
RS-25 rocket engines.

Not all rockets need the large test
stands. Smaller rocket engines can
make use of smaller stands, some of
which are portable.

Test stands can perform a number of
tests of a rocket engine. They can
measure the performance of the engine,
how well it reacts to commands, the
temperatures inside the engine
components while the engine is firing,
length of time the engine is firing and
more.

The stands also need to be able to absorb the massive amount of energy released by the motor.
Most of these motors are destined to be launched into space and so develop a lot energy. The test
stand needs to be constructed to contain that energy. Even more important is the ability of the
test stand to minimize damage in the event of the failure of a motor. Should an engine experience
an anomaly you can have a sudden release of all of that energy in a very uncontrolled manner.

There are basically two types of test stands;
horizontal and vertical. The test stand at
Stennis pictured above is a vertical test
stand. Vertical test stands are very good at
testing the rocket in the same orientation
that it will be flying in. This allows for
testing of the fuel tanks, pumps and other
hardware in the same attitude that the rocket
will be in during flight. Vertical test stands
tend to be more expensive to build and
maintain as they're very tall. You will
probably need a flame trench as these
rockets fire in a downward direction, the
same as during flight.

25 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The test stand at the bottom of the previous page is the J-1 horizontal test stand at the Glenn
Research Center. Horizontal test stands are typically used just to test engines themselves and not
the associated hardware. These stands are usually cheaper to build and maintain, and depending
on the size of the stand, can even be made portable. Because the engine exhaust does not point
towards the ground, there is no need for a flame diverter or trench. Horizontal test stands can
often be seen in university settings as they tend to use less powerful motors and are cheaper to
build and maintain.

Our Test Stand
The test stand we are going to build has many of the same characteristics of the larger test stands.
It places the solid rocket motors in the vertical position. However, instead of the motor exhaust
facing down it will face up. This stand is designed to test commercial solid rocket motors where
the specific impulse and thrust curve is published by the manufacturer and have been tested and
certified by the NAR. The thrust curves created by this test stand can be compared to the NAR
developed thrust curves. This can be valuable when testing under various environmental
conditions (such as cold winter or hot summer temperatures) and using the updated data to more
accurately simulate rocket performance.

The test stand is also our next step in learning about electronic design and fabrication, as well as
programming while using an Arduino microcontroller. Our past projects have used the Arduino
Nano, either as the main board for an electronic payload or to control the Arduino Launch
Control System. This project utilizes the Arduino Mega2560 board, which is more powerful and
has more pin options available.

The test stand makes use of a remote unit, tethered to the main test stand by a 10-foot DB15
cable. This is a new challenge to be able to control the electronics located on the stand from a
safe distance away.

This also challenged me to expand my ability to design and print 3D enclosures for the
electronics in the stand and the remote unit. The design needs to include attachment points for
the electronics and access to the various connections, such as USB and the DB-15 cable. I
needed to make sure that the mounting holes were located properly and that the various boards
are positioned in logical locations.

Lastly, I needed to do more programming than any previous project. The test stand software has
three separate logs for each test. The first log records basic information about the test (such as
location, motor tested, etc), the second log records the functions of the board and when they
occur (such as re-calibration of the load cell, when the fire button was pressed, environmental
factors just prior to ignition, etc) and finally, the log of the test firing so that thrust curves can be
created.

I have seen other projects where the electronics are out in the open, often using a breadboard to
create the project. There is no doubt that these projects work and I have found several of these
provided inspiration for this project. However, I wanted a test stand that had the look and feel of
a working piece of test equipment. I wanted a test stand that would look ‘finished’ and could be

26 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

placed on a display of model rocketry objects and look like it was an actual research tool –
because it is. That is why I designed the 3D enclosure and remote head.

This project presents a number of challenges, and like our previous projects I worked through
each one until I had a functioning test stand. I hope that you will try this project and enjoy
building it as much as I did. Remember, I am learning this new (to me) aspect of the hobby, so I
talk about what went right and what went wrong. After all, it is the things that go wrong that
teach us the most.

27 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

04
Designing the Test Stand
As with any science or engineering project, one of the first things that needs to be done is
background research. What have others done, how well did it work, what improvements can be
made? What can we learn from their experience and incorporate into our designs? I needed to
determine what specific tasks I wanted this test stand to perform. My research took me down two
specific paths – the first concerning the motors themselves, and the second path concerned the
construction and layout of the test stand.

Research
The National Association of Rocketry (NAR) offers its members access to the Research and
Development (R&D) reports library. These reports that have been submitted over the years for
the R&D event at the National Associations of Rocketry’s Annual Meet (NARAM). These
reports covered a wide range of topics, with a number of reports looking at the performance of
black powder engines. Some reports looked at the physical characteristics of the motors prior to
use and correlated that to the performance during flight. Other papers reviewed how external
factors can impact the performance of the motor.

Another important part of the research was reviewing the documentation of the NAR Standards
and Testing (S&T) Committee. This committee performs the testing for all model rocket motors
certified by the NAR. They have specific requirements and procedures that they use when
conducting testing. While the S&T committee looks at performance, they are looking for
consistency in performance and that the labeling of the motor by the manufacturer equates to the
actual performance of the motor.

There are also a number of documents, tutorials and videos on constructing model rocket test
stands. Some of these are very simple and basic in construction and operation, while other stands
are designed to conduct testing of high performance, high power rocket motors.

I looked at the documentation on the test stands used by NASA, SpaceX and other rocket
companies. I wanted to understand how they use their test stands, what procedures are used
during a test, what data they collect, etc.

The one thing that had an impact in the design and construction of the test stand was the need to
make it a useful educational and research tool. Many of the NAR R&D motor research
documents needed a test stand as part of their research. I read an article on how a high school
was using a test stand to help teach calculus3. With TARC competition being ever more popular I
was sure they would be conducting testing of the motors the teams plan to use. I wanted to create
a test stand that would be meet all of these challenges.

3 "Using a Model Rocket-Engine Test Stand in a Calculus Course" -
https://pubs.nctm.org/view/journals/mt/95/7/article-p516.xml

28 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Based on this research, I developed a list of specifications of what I wanted to be able to
accomplish with the test stand. I decided early on that the stand will be designed for low to mid
power black powder motors. It needs to be flexible and have the ability to test a variety of motors
various diameters and lengths. To accomplish this it meant designing mounts that had to be
interchangeable.

I wanted the stand to look more like a “real” piece of testing equipment. A number of test stands
that you find on the web are made using just breadboards with all of the wiring exposed. I
wanted something that had a more finished look to it. I also saw on other systems where there
was a lot of ‘residue’ from the black powder motors that would get on the test stand’s
electronics, and sometime cause issues. This meant that the electronics would need to be
protected in some fashion.

Looking at the requirements made it easy to determine what electronics would be needed in this
project. A load cell is necessary to perform the actual thrust measurements. Here I decided to use
a 5kg cell, as this would be adequate for the motors I envisioned being tested.

From the research I had performed I also knew that environmental conditions (such as
temperature, humidity and barometric pressure) can impact motor performance. This necessitated
an environmental sensor be incorporated.

The S&T Committee records the temperatures on the outside of the motor casing to ensure it
doesn’t rise above 200o C. This sensor would have to wait till later.

I needed a way to store all of the data from each test. For that I would decided on a MicroSD
Card module solution.

There are other items that I want to include. A warning system needs to be included. A simple
solution is to use a piezo buzzer and warning lamps. A clock which could provide basic info to
the user along with an LCD screen for instructions.

Finally, there would need to be an interface between the user and the test stand. Much like a
launch controller, the interface (or remote head) would need to be about 10-15 feet from the
stand. I also saw the need to have a laptop be an integral part of the system. The laptop would be
used to monitor the system as well as allow the user to provide input. If things went well, I was
hoping to incorporate a Raspberry Pi into the system (that didn’t happen – at least not yet).
With the research complete and these specifications in hand, it was time to start work on
designing both the hardware and software for the test stand.

Initial Designs
I wanted to have a good idea of how the test stand was going to look. When I created Project:
Icarus it was the first time I had used Tinkercad to create parts for a project. I decided to use it
again, this time from the beginning of the project, to develop an idea for how the test stand
would be built.

29 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

For the interchangeable motor mounts I had decided to utilize PVC pipe. They would be attached
to a load cell, which is then mounted on a nearly square piece of particle board (actually a piece
of scrap from our counter top from a bathroom remodeling job). While I could create the test
stand base as a simple cube, there is no load cell nor PVC pipe fittings in Tinkercad. Before I
could design the test stand I needed to create the parts that would make up the individual
components of the test stand.

The first item I tackled was the load cell. A set of
dimensioned drawings was available so it was a
fairly simple matter to recreate it in Tinkercad.
With the load cell created as a part, it was ready
to be inserted into the drawing. However, there
were no drawings of M4 screws or nuts
available. This became the next step. Once these
items were completed, I was able to add the load
cell to the base of the test stand.

Next on the list was the motor mounts and attachment
plate. The attachment plate is an oval electrical panel
cover. It is not a perfect oval or square, but rather a
combination of both. After measuring an actual cover, one
was created and it was attached to the load cell.
I was now at the point where I needed to create the PVC
connection that attaches to the plate on the load cell. I
planned on using a 1.5-inch female fitting on the plate.
This would allow the use of both 1.5-inch and 1.25-inch
fittings. Taking careful measurements of the actual fitting,
a reasonable replica was created in Tinkercad.

Looking at the exploded view on the right shows that the
bulk of the design is just round tubes. A helix is used to
simulate the threads inside the fitting. A series of “round roof”
components were used to simulate the raised edges. When
combined together, the result was a satisfying facsimile of a 1.5-
inch PVC fitting.

The PVC fitting was centered on the load cell platform. I knew
that I would need to vent any ejection charge gases so a hole is
created in the fitting, perpendicular to the load cell.

The next step in the design process is to determine where the
Arduino Mega2560 board will be located. I wanted to keep the
board and any other electronics away from the exhaust and other particulate matter of a burning
motor. I also knew that I have to keep the load cell amplifier close to load cell and the Arduino
board. The best (and easiest) solution is to locate the board under the test stand. Furthermore, by

30 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

enclosing the board and any other electronic components in a protective housing it helps keep the
components free from any debris.

Tinkercad has a number of small electronic boards, including the Arduino Nano. However they
do not have a Mega2560 board. Hoping I would not need to create an Arduino board in
Tinkercad I did a search and found a nice ready made drawing. This was copied and imported
into the test stand drawing. My initial plan was to create a simple box that would cover all of the
electronics located at the test stand. I even added some warning lamps to each corner of the
stand. Finally, a series of small round legs were created to raise the test stand up off the ground.
Thus the first design version of the test stand is complete.

Even though I now had an initial design drawing there were still a large number of unknowns
with this project. In order to develop the code required to run the test stand, I would need to have
the load cell attached to the base. Still I was pretty confident that I could use this drawing to start
building the physical test stand.

The stand was laid out as designed and holes are drilled for the load cell mounting points. An
additional hole is drilled to allow the electrical wiring to pass through the stand and remain
underneath. Instead of creating the legs at this stage, I simply use small painters tripods to hold it
up off the work table.

With this stage of the design and construction complete, it was time to gather the electronic
components I need to start writing the code to bring the test stand to life.

31 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

05
Components

A Quick Note about the Products Mentioned

Any product that you see mentioned in this manual is listed because I bought it, use it, and found
it did the job I asked of it. No person or company sent me anything. I do not receive any type of
compensation if you buy anything I mention here.

In the introduction I outlined what I want the test stand to record (engine force and
environmental conditions) along with how to input, display and store that data (the Serial
Monitor and MicroSD card). Based on these requirements, I have a pretty good idea of the
electronic components I need. I also know this could change as I get into the actual development
process.

Another aspect of this project that is different from our other projects is that it is divided into two
separate components. The bulk of the electronics and sensors are located under the test stand
itself, while a remote head is used as the interface to interact with the stand. In this section I will
list all of the electronics that I used in final project. They are broken down into two areas; Test
Stand Components (the parts under the stand) and Remote Head Components.

The Test Stand Electrical Components

Elegoo Mega2560
The Mega2560 board is the one I chose for this
project. It is a clone of the Arduino Mega2560 board.
This board has additional memory and pins slots.
The setup of the board makes it easy to attach
jumper wires between the board, a breadboard, and
the various sensors and components. It also helps
with rapid testing of various aspects of the system as
well as moving connections and components when
needed.

It becomes a bit more of a challenge when moving
from testing to actual product. The fact that the
board is installed in the test stand and in an inverted position provides an additional challenge.

32 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Load Cell & Amplifier
The Load Cell is used to record the amount
of thrust generated by the rocket motor. I
purchased a 5kg cell which will be plenty for
the motors we are testing.

The load cell electrical signals by themselves
are too weak to register so an amplifier is
required. While the load cell did come with
an amplifier I decided to go with the Sparkfun HZ711 amplifier
instead. Most of the research done on the amplifier indicated
that it was more accurate and stable than others, so I spent the
extra money for the upgraded board. The choice is yours if you want to do this.

MicroSD Card Module
The MicroSD Card Adapter Reader Module is used to record the motor performance data, the
system performance data, and the basic test information to a
MicroSD card. The module I chose has a 6-pin SPI Interface,
consists of GND, VCC, MISO, MOSI, SCK, and CS pins. The
module that holds the MicroSD card is recessed slightly from
the edge of the circuit board. While this caused a bit of a
headache in inserting and retrieving the MicroSD card, a simple
solution made the task easier.

LEDs
There is a need to be able to tell the status of the test stand at any
point during the test. We wanted a visual indicator when it was safe
to approach the test stand, and when to stay away. To meet this
need I use a combination of 10mm RGB Multicolor LED lamps and
5mm white/clear lamps. A pair of these LEDs are located on each
corner of the test stand. Besides acting as a warning, the lamps look
really cool!

RGB LEDs
The use of a programmable RGB lamp allows us to write code that
can change the color of the bulb depending on the status of the stand. I use the three basic colors
of Green (OK to approach the stand), Yellow (a motor is on the test stand and will soon be fired)
and Red (the countdown to firing the motor has commenced or we are in the post fire stage).

Red and White/Clear LEDs
A 5mm red LED is used to show that the ignition system has continuity. We use the 5mm clear
LEDs to add a flashing strobe pattern once the test stand is in either a “Yellow” or “Red”
condition. This is an additional warning to supplement the color RGB LEDs.

33 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Piezo Buzzer
The piezo buzzer is used to help draw your attention to certain activities
occurring on the system. It will chirp when the system successfully initializes, it
provides warnings that a countdown is underway on each second as well as a
long continuous tone while power is being supplied to the test stand. It also
chirps rapidly and repeatedly when a launch is aborted.

BME280 Environmental Sensor
The BME280 is used to record temperature, humidity and barometric pressure.
It uses the I2C communications protocol, so it shares these pins with the Real
Time Clock and the LCD screen.

Real Time Clock
A Real Time Clock (RTC) provides an accurate date and time stamp for the
data. It has its own battery which keeps the clock running even when power to
the system is turned off. Like the BME280, the RTC uses I2C and so it shares
the use of these pins.

Firing Relay
The firing relay takes the signal from the Arduino and allows power to
continue to the motor test stand to ignite the motor. It is the gate keeper
for the test stand power. It uses a single pin on the Arduino (D49) to send
the signal to the relay when to open.

On the opposite side of the relay is the positive power coming off of the
batteries. This is attached to the Common (middle) connection. A second
line comes off the relay on the Normally Open (NO) connection and goes
to the igniter clip at the stand.

Resistors
A number of resistors are required for this project. They are used for the RGB
LEDs and the strobe lamp LEDs. 220 Ohm resistors are for the RGB LED to
function properly. I would need to add three 220Ω resistors to the bulb. Each
resistor attaches to a leg of the bulb (one each on the red, green and blue legs).
I also use a 1KΩ resistor for the continuity circuit.

AA Battery Holder
This is used to provide power to the igniter. I used a four battery holder on my version of the test
stand. You can use whatever size battery pack you desire. Just make sure you adjust the
resistance for the continuity lamp for the power supply you select.

34 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The Remote Head Electrical Components
The remote head is the hardware interface between the user and the test stand. It is what allows
the user to operate the test stand at a safe distance.

LED Clock
I wanted to add an LED clock which also acts as the 5-
second countdown clock and to display other simple
messages. I selected a TM1637 display. This is a 4-digit, 7-
segment display. It uses two of the digital pins on the
Arduino Mega2560 (D12 and D13) and requires a +5V and
ground connection. The LED clock gets its information from
the Mega2560 board, but it is located in the remote head.

LCD Screen
The LCD screen is used to display the current date and time, as well as
provide updates on the system. The LCD screen utilizes the I2C
interface, along with the BME280 and the Real Time Clock.

Function Buttons
Four buttons are located on the remote head
that control the functions of the test stand.
They include a Reset button, a Cal(ibrate)
button, a Start button and a Fire button.

Reset Button
This is a momentary push button that when
pushed will reset the system. It will cause the system to reboot and go through the initialization
process. It is connected directly to the RST (reset) pin on the Arduino. This button uses the white
cap. The system is reset prior to each use.

Start Button
When pushed, this momentary button starts the actual test process. It requires the user to begin
entering information in the computer through the Serial Monitor screen. It is connected to pin
D9 on our Arduino and uses the green cap.

Calibration Button
This is another momentary push button that is used to calibrate the load cell prior to use. It is
connected to pin D8 on our Arduino. This button uses the blue cap.

Fire Button
This button is used to start the 5-second countdown to the firing of the motor. If the button is
released during this time, the firing of the motor is aborted. It is connected to pin D7 on the
Arduino.

35 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

DB15 Connectors and Cable
We needed the ability to fire the rocket motors a safe distance from the test stand. We use a USB
cable to connect the Arduino to the laptop and a DB15 cable to connect the electronic
connections from the test stand to our remote head. This required the use of two female DB15
connectors (one attached to the test stand and the other attached to the remote head) and a 10-
foot DB15 cable.

Other Hardware
While the electronics are the primary focus of this manual, there are other parts that we need to
complete the test stand. Here are the rest of the materials we used in the making of the test stand.

• Wood Base
Approximately 1-foot by 1-foot

• PLA+ filament
I used black and orange, but feel free to use any colors you like

• Wood screws
To secure the legs and wiring conduits

• 1.25-inch PVC pipe
This will be used to create the motor mounts

• 18mm and 24mm motor mount tubes
I used standard Estes motor mount tubes and motor blocks

• Electrical box cover
This is a standard 4-inch square steel box cover that is used to attach the PVC mount to
the load cell

• Alligator clips
These are used to attach the power cables to the igniter

• Heat shrink tubing
This is used to protect and cover solder connections in the electronics housing and remote
head

• Heat set inserts (M3)
These are used in the electronics housing and remote head to attach the covers to the base

• Stainless steel screws (M3)
These are used with the heat set insert

36 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

• Nylon screws and nuts (M2 and M2.5)
These are used to attach the electrical components to the electronics housing and the
prototype boards

• 2.5M steel nuts and bolts
These attach the load cell to the test stand platform. Use a length that will work with the
thickness of your platform

• Protective Wire Wrap (3/8-inch)
This will cover the wires from the warning lamps on the underside of the test stand
platform

• Felt feet
These are added to the bottom of the adjustable legs on the test stand

• Rubber feet
These are added to the bottom of the remote head to stop it from sliding around

• RV camper levels
These come in pairs and are attached to two sides of the Test Stand platform to allow you
to level the platform

Tools and Supplies
• Soldering iron and solder
• Heat insert tool
• Screwdriver
• 3D printer
• 5-minute epoxy
• Blue painters tape
• Helping hands clamps
• Label maker
• Stickon Vinyl
• Orange and black paint
• Ruler, pencil
• drill and drill bits
• PVC adhesive
• Wood glue
• Clamps

37 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

06
Writing Code
This is the fifth rocketry project that I’ve created using an Arduino board. I knew I would be able
to reuse some code functions from our previous projects. This includes:

• The firing sequence, countdown timer and LED clock routines would come from the
Arduino Launch Control System (LCS) project.

• To store the data that would be collected would require the use of a MicroSD card. For
this I could use the code that I developed for both Project: Icarus and The Olympus
Project.

• These two projects would also provide the base code for controlling the LED lamps
located on the test stand.

The code that records the load cell data would have to be new. I knew that the code from the
BMP180 sensor would not transition to the BME280 sensor. I would also need to write code to
allow the user to interface with the stand via the Serial Monitor on a computer.

There would be a need to create test routines in the code. Some of these would be permanent
while others would be temporary. New in this project would make use of the Serial Monitor as
an input device and not just as a monitoring tool. I would need to write code to allow the user to
interface with the stand via the Serial Monitor on a computer. I also wanted the code to “make
sense” so that I could come back later (days, months, maybe years later) and understand what I
wrote.

Documenting the Code
A major reason for documenting your project is to record what the code you write is supposed to
perform. This is a habit I learned long ago when I first started writing BASIC programs on the
Commodore 64. It is important that you include enough notes in the code that it describes what
the code is doing and why. If you come back a year from now and look at the code, the notes in
the code should be adequate to tell you what you were doing at the time. If you are asking
yourself “Should I add a note here?” go ahead and add it. I have never heard another programmer
complain that the code they were reviewing had too many comments. The common complaint is
that the previous programmer didn’t add enough comments. This results in spending a lot of time
trying to figure out what the previous programmer was trying to accomplish.

Another aspect of documentation is to keep a journal of notes that tracks what you wrote. This
can be used to make comments on issues you ran into and how you solved them. These notes
will likely be more in-depth than the notes in the code itself.

Layout
As you start to write your code you should develop a particular style. Even if you are just writing
code for yourself, you will find that there are certain things that you will do for each project.

38 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Once you have a style you like, it can be useful to create a template. A template allows you to
document each project in pretty much the same way each time.

Note: The Arduino IDE that you are using will dictate how you can use the template in
your production environment.

In the classic Arduino IDE you can create your template and save it. Next if using a
Windows computer, open up the file manager and go to “C:\Program Files
(x86)\Arduino\examples\01.Basics\BareMinimum”. You will see the file
BareMinimum.ino. Rename the file to something else (I use the name BareMinimum.org).
Copy and paste your new template in this directory. Change the name to
BareMinimum.ino. Now when you are in the classic Arduino IDE, you can click on File
> New and your template will be displayed.

With the release of the update Arduino IDE 2.0, a different procedure must be used. The
following is from the Arduino web site at https://forum.arduino.cc/t/arduino-ide-2-0-1-is-
now-available/1046764

When a new sketch is created, Arduino IDE populates it with the bare minimum
empty setup and loop functions.

Some users may wish to adjust this code. That is now possible by specifying the path to a
file containing the custom content in the advanced settings:

1. Press the Ctrl+Shift+P keyboard shortcut (Command+Shift+P for macOS users)
to open the "Command Palette".

2. Select the "Preferences: Open Settings (UI)" command from the menu.
3. A "Preferences" tab will now open in the IDE. In the "Search Settings" field,

type arduino.sketch.inoBlueprint
4. Add the path to the file containing your custom new sketch content in the field

under the "Sketch: Ino Blueprint" setting.
5. Click the X icon on the "Preferences" tab.
6. Select File > Quit from the Arduino IDE menus.
7. Start the Arduino IDE.

The remainder of this chapter will be a description of how I laid out my code in this project. Feel
free to use anything here if you think it will help in your projects.

Title Block
I start my code with a title section. This is a series of comment blocks that provide information
on the project. The first section gives the name of the project, the version number, a brief
description of what the project does, and the date of the last update. Since I release my code as
open source projects I decided the license I will use is GPL-3.

39 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

/* ***
 * Project: Model Rocket Motor Test Stand
 * Version: 1.0.0
 * Description: This test stand is designed for black powder model
 * rocket motors from mini "T" motors through "F"
 * power motors. Test stand utilizes a single load cell
 * and a HX711 amplifier.
 *
 * Test stand includes a BME280 temperature, humidity and
 * barometric pressure sensor which is displayed on an LCD
 * screen.
 *
 * Incorporates a RTC to display time on a 4-digit
 * 7-segment LED.
 *
 * It maintains three logs during the test
 * - Basic test information
 * - Test stand system status
 * - Load cell data during test firing
 *
 * Created: 05 January 2023
 * Updated: 28 September 2024
 *
 * Author: Robert W. Austin
 * (C) Austin Aerospace Education Network
 * License: GPL-3.0
 *
 * ==

The next section is a list of any coding examples I use or modify in the project. I also provide a
link to the code if it is on the internet. This does several things. First, it recognizes the
programmers who came before me and generously donated their expertise so that I could learn
from them. It allows you as to go and see how the original code was written. Finally, if I run into
an issue with a piece of code and can’t figure out what I did wrong, it can often help to go back
and look at the original code.

 * ==
 * Based on the following coding examples:
 *
 * TM1637 Clock Example
 * https://www.makerguides.com/tm1637-arduino-tutorial/
 *
 * Arduino - LCD I2C Tutorial
 * https://arduinogetstarted.com/tutorials/arduino-lcd-i2c
 *
 * Read Load Cell (Examples -> (Examples from Custom Library) HX711_ADC ->
 * Read 1x Load Cell
 *
 * ==

The third section is a list of components and pin configurations. This identifies what is being
used and where components are being plugged in. I also include the name of the board being
used. This is important as different boards have different pin configurations.

40 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

 * ==
 * Pin configuration - for Mega 2560 board
 *
 * Peizo Buzzer
 * SIG A0
 *
 * Strobe LED Lamp
 * SIG 2 (D2)
 *
 * RGB LED lamp
 * Red 3 (D3)
 * Blue 4 (D4)
 * Green 5 (D5)

This completes the Title Block of my code. All of this information has been nothing but
comments - there is no actual, executable code contained here. However, when I return to the
code 6 months, a year from now, or longer, this section of code will provide the basic
information I need to understand what the project hardware is designed to do.

Header Blocks
There are other items I use while writing code besides in the very beginning. One item I use
frequently is header blocks. Every time I start a new function, I add a header block. They are
placed just above the start of the function, as seen in the example below:

/**

* *
* FIRE DATA COLLECTION SEQUENCE *
* *

**/

void fireDataCollection(void)

This header block lets me know what the function is designed to perform. If needed, I can add
additional comments to explain the function in greater detail. Typically, you will find these at the
top of a new tab, as I tend to put each function in its own tab. However, if I have multiple
functions in the same tab, each function on that tab gets a header block.

Subsection Dividers
These are contained within each function. These are used to identify what each part of the
function is designed to accomplish. A sample is seen below:

// ==
// Ready for Test Firing

If needed, additional comments are added for clarity.

41 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Comments
Finally, as we noted previously, make use of comments. The can be a great help when trying to
understand what the code is trying to do.

// Write the following in this section
// - time stamp in milliseconds
// - data from load cell
// - call to write data to SD card

42 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

07
Libraries, Declarations,
and Setup Code
With the Title Block created, along with the pin assignments and code references, it is time to
start adding in the first parts of actual code. First we must identify any libraries that will be used
in our program. This is followed by the declarations for any global variables that will be used in
the software. Once these items are entered we can proceed to the setup() function.

Libraries
Libraries are pieces of code that help make writing your program easier. There are literally
thousands of libraries available for the Arduino. You can look at the Arduino Library Reference
(https://www.arduino.cc/reference/en/libraries) for more in-depth information on the types of
libraries that have been made available.

Any library I use is listed in this section. I also use comments to indicate what the library is being
used for. Sometimes it is for a component (such as the MicroSD card module) while other times
it is a functional library (such as the timer library used for the strobe lamps). Each library is
separated by a series of lines. This lets me know exactly what libraries are used for specific
components/functions. A sample is seen below.

/**
 **
 * *
 * LIBRARIES *
 * *
 **
 ***/

// ==
// library required for the Real Time Clock DS1307
 #include <RTClib.h>

// ==
// library required for the TM1637 display
 #include <TM1637Display.h>

// ==
// library required for flashing strobe lights
// regardless of other activities
 #include <MsTimer2.h>

43 | P a g e

https://www.arduino.cc/reference/en/libraries

Project Vulcan - A Model Rocket Motor Test Stand

Declarations
This section contains all the global variables that are used in the program. As before, each
declaration is segmented for a particular component or function. This can be a rather lengthy
section of your code. The assigning of variables allows you to write code that can be easily
modified later.

/**
 **
 * *
 * DECLARATIONS *
 * *
 **
 ***/

// ==
// declarations for Program Version
 const int prgMajor = 1;
 const int prgMinor = 0;
 const int prgPatch = 0;

The Declarations section is rather lengthy in this project. The declarations made here are used in
multiple functions throughout the program. If a variable is only used within a single function, it
is declared within that function and is not listed here. Now let's take a closer look at the MicroSD
card declaration section, shown below.

// ===
// declarations for the MicroSD card
 float timeDataCollection;
 String dataString = ""; // make a string for assembling the data
 // to the log

 char fileMotorLog[] = "MTRLOG00.CSV";
 String sdImpulse = "";
 String sdTotalImpulse = "";
 String sdTimeStamp = "";

 char fileSystemLog[] = "SYSLOG00.CSV";
 String sdRTCStamp = "";
 String sdMessage = "";
 String sdResult = "";

 char fileInfoLog[] = "INFLOG00.TXT";
 String sdInfo = "";
 String sdDate = "";
 String sdImpulseTotal = "";
 String sdThrustAvg = "";
 String sdDelay = "";

There are a couple of things I want you to notice in the MicroSD card section above.
 There are declarations for three different logs:

o MTRLOG00.csv (Motor Log)
o SYSLOG00.csv (System Log)

44 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

o INFLOG00.csv (Information Log)
Each log tracks a different component of the test stand, yet all three logs will have the
same number attached.

 The first is the variable char fileMotorLog[] = "MTRLOG00.CSV"; This is the file
name that will be stored on the MicroSD card. The two zeros (00) in the file name will be
incremented for each new file. The “csv” file extension indicates it is a “coma separated
variable” file. The csv extension for import into a spreadsheet or database.

 Keep in mind that it must use the “8.3” format of 8 letters, a dot, and a 3 letter extension.
You need to keep the two zeros to allow the auto file naming routine to work.

 The variable sdTimeStamp = "" attaches the elapsed time stamp to the file. This is the
amount of milliseconds that have elapsed between the time the Mega2560 was powered
up and the data was collected.

Next we will look at the void setup() and void loop() code that make up the rest of the
code in this tab.

void setup()
This section of code is included in every Arduino program. It is where we start setting up the
Arduino board so that it can begin to do things. This will include initializing pins on the board,
turning on sensors, setting up modules, etc. The setup() section is run only once, at the start of
each Arduino program.

There are a number of things going on here, and they are performed in a specific order. You
should also notice that most of the items in setup() are actually calling other functions located
elsewhere in the program.

Using Functions
If you have looked at most Arduino code published on the Internet, you will typically find
everything written out in the setup() function (and the loop() section as well). This is fine for
small programs, but it can quickly get out of hand when writing larger programs such as this. To
make things easier to code, to debug and to ultimately understand what the software is doing, I
use functions to perform very specific actions. Let's take a look at part of the code in the setup()
to see how this works. Take a look at the code snippet below:

 // ===
 // Setup for Real Time Clock
 setupRTC();

 // ===
 // Check Date and Time
 setupDateTimeCheck();

 // ===
 // Setup for MicroSD card
 setupMicroSDCard();

45 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

 // ===
 // Setup for BME280 Sensor
 setupBmeSensor();

 // ===
 // Setup HX711 Load Cell
 setupHX711();

 // ===
 // Setup Fire Control System
 setupFireControl();

Even if you don't know anything about programming or the C language, it is still pretty easy to
figure out what the program is doing. Each function call describes what you expect to have
happen, whether its setting up the MicroSD card, activating the BME 280 sensor, or getting the
Fire Control System ready for use. The function names are descriptive enough to figure out what
you expect them to do that you really don't need the comments - but put the comments in
anyway! There are a number of activities being performed in setup(). However, by using
functions, we make it easier to really understand what is happening during the setup process.

This also helps with debugging. When you discover something not working the way you expect,
having the program broken into separate functions makes it easier to troubleshoot. Suppose you
have problems with initializing the MicroSD card and you think the problem is in setup(). By
commenting out the function call, you can bypass that function. If the program works as
expected, you now where the problem likely located. If the program still fails at the same point,
then you know that the function you bypassed isn't the cause.

I would encourage you to use functions in your own programs, especially as they become more
expansive and involved. You will probably find it makes life much easier than putting everything
on a single tab.

In the rest of this chapter we will take a closer look at what is actually occurring in the setup()
function.

Initializing Serial Port
The first item in the setup routine is to initialize the serial port. This is performed first as it
allows us to see what our program is doing through the Serial Monitor. When we run into issues
we can write test code and see the results on the Serial Monitor. With the Test Stand program,
we use the Serial Monitor to input data. If we can't get the Serial Monitor initialized, we simply
can't use the software.

The rate is set to 115200 baud and this must match the rate on the serial monitor. If the
Mega2560 and the Serial Monitor are at two different rates, you will likely get nothing but
garbage characters on your serial monitor screen. You might not get nothing at all.

46 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Splash Screen
The line splashScreenSerialMonitor(); is used to call the first function of setup. If you
look at the code in the Arduino IDE, there is a tab titled “Serial_Monitor_Splash_Screen”. The
code in that tab is below.

/**
 **
 * *
 * SPLASH SCREEN ON SERIAL MONITOR *
 * *
 **
 **/

void splashScreenSerialMonitor(void)
{
 // Display on the Serial Monitor
 Serial.println(serialLine);
 Serial.println();
 Serial.println(F("Austin Aerospace Educational Network"));
 Serial.println(F("Ground Support Project"));
 Serial.println();
 Serial.println(F("Project: Model Rocket Motor Test Stand"));
 Serial.println(F(" Using the Arduino Mega2560 Microcontroller"));
 Serial.print(F("Version: "));
 Serial.print(prgMajor); Serial.print(F(".")); Serial.print(prgMinor);
 Serial.print(F(".")); Serial.println(prgPatch);
 Serial.println(F("https://rocketryjournal.wordpress.com"));
 Serial.println();
 Serial.println(serialLine);
}

At the very top is the header that we described earlier in this section. Directly after that is the
statement void splashScreenSerialMonitor(void). This is the name of the function and
this is where the program will jump to when it sees the line splashScreenSerialMonitor();
in setup().

The code displays a splash screen on the serial monitor. It identifies the name of the program, the
version number and the address to our web site. Once the code has been executed, it will return
back to the setup() function and execute the next line in the code (see graphic below).

47 | P a g e

When the function is
finished, it returns back to
the original function.

Jump to
function

Project Vulcan - A Model Rocket Motor Test Stand

Setup Display Screens
The next two sections setup both display screens, the 16 x 2 LCD screen and the 4-digit 7-
segment display. These are setup early to allow us to see additional information on these screens.
The LCD screen lets us know that the system is initializing while the LED display shows
"BOOT". As each item comes on line, we will see this displayed on the LCD screen.

The setupLedDisplay() is also the first time we run into locally declared variables. In this case
the variables are used to show "BOOT" on the display. "BOOT" is only displayed in this
function, so by putting the variable declaration locally in the function the memory used to hold
these variables are released once the function is complete. By using local variables instead of
global variables where possible, we help preserve memory for use by other functions.

LED & Buzzer Pins
Next, the pins for the LEDs are setup. This includes both the RGB LEDs and the white LED that
will act as a strobe. This is followed by the buzzer pin initialization.

Setting Up the Real Time Clock (RTC)
Just about everything performed with the test stand has a time attached to it. Sometimes the time
is reported in milliseconds since the Arduino was activated. Other times it is reported as standard
time in a 24-hour format, and sometimes both times are reported. The Real Time Clock not only
keeps the local time, but contains a battery that keeps the clock running even when the power is
turned off to the Arduino.

In this function the programs looks to see if the RTC is present and running. If it can't find the
clock it reports the error on all three displays, turns the LEDs to red, and stops the program from
progressing any further. If the clock isn't running, it won't make sense to continue. If the program
is able to find the clock, it reports that RTC has been initialized.

Next it checks to see if the RTC has lost power. If the clock has lost power (such as a bad
battery) it will reset the time to the date and time the program was compiled. This will provide a
date and time, but it may be off by several minutes to several years! (We will deal with this in
the next function call) If no loss of power is detected this is reported via the serial monitor, and
then displays the current date and time. This information is also recorded to the System Log on
the MicroSD card (more on this shortly).

Checking and Adjusting the Date & Time
As noted above, the RTC may display an incorrect date/time if power has been lost. You may
want to have the date/time match what is on your computer. This function allows you to adjust
the date and time.

When called the function displays the current date and time, and then asks the user if this is
correct. If it is correct, the user enters a 'Y' into the serial monitor and the program continues. If
the User enters 'N' then the program will ask the user to input the correct date and time. When
the user enters the current minute and hits the enter button, that date and time is sent to the RTC.

48 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The results of this function is reported to the System Log. It records whether the time was
accurate or if it needed to be changed.

Setup the MicroSD Card Module
The next part of the setup() section is used to initialize and setup the MicroSD card module.
This is another critical component of the Test Stand. All of the data is recorded on the MicroSD
card. This allows you to import the motor test data into a spreadsheet or database. It also records
system events and information on the motor being tested. Therefore it is very important that this
component is working properly.

Check the Status of the Card
In the first part of this function we see the declaration of a local variable. In this case it is the
chipset for the Mega2560 board. This is the only function that uses this variable, so we declare
the variable locally instead of globally.

// ==
// variable declaration
 const int chipSelect = 53; //pin number for CS on Mega2560 board (D53)

Next the software performs a test to see if a MicroSD card has been inserted into the module or if
that card is defective.

// ==
// initialize Micro SD card
 Serial.println();
 Serial.println(F("Initializing Micro SD card. Standby..."));

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect))
 {
 Serial.println(F("Card initialization failed, or not present. Replace

card and reset system."));
 Serial.println(serialLine);

If the card is missing or corrupt, the software will notify you two ways.
 A message will appear on the serial monitor indicating the failure with instructions to

replace the card and restart the system (as seen above).
 The LED display will show "FAIL"
 The LCD display display an error message
 The LED lamp will turn red

The program stops execution at this point.

If the card module is initialized successfully, the serial monitor and the LCD screen will both
display a successful initialization message. The program will then continue to the next phase of
the MicroSD card setup process.

49 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Setup the Logs on the Card
With the successful initialization of the MicroSD card, the software will begin to prepare the
card to receive data. First it looks for the file "fileMotorLog" along with the last two number of
the file name.

// create new file name - from altduino.ino
// create a new file
 for (uint8_t i = 0; i < 100; i++)
 {
 fileMotorLog[6] = i/10 + '0';
 fileMotorLog[7] = i%10 + '0';

 if (! SD.exists(fileMotorLog))
 {
 break; // leave the loop!
 }

The first thing it does is start a loop creating a new file name. It does this by replacing the last
two digits with numbers between 00 and 99. Once it finds it has created a file name that does not
exist, it exits the loop and continues on.

The next step is to write the initial data to the card. It starts by opening the file and writing the
first row of the CSV file. This row contains the headers for each column. These are constants
that do not change. It does this by first assigning the names of each column header to the variable
dataString. Each column header is listed in order with a comma between each header name. In
the sample code we start with the Time Stamp and then we have header names of “Load Cell
Reading (n)” and “Total Impulse (n)”. The dataString is then written to the card and the Motor
Log file is closed.

The same process is then followed for the System Log and the Information Log. Both logs use
the same file number as the Motor Log, making easier to link the 3 files for a single test.

Finally, the program has been holding on to information about the Real Time Clock, the Time
Sync information and even the MicroSD card that need to be added to the System Log. This
information is now recorded to the MicroSD card. Finally, the software reports on the successful
initialization of the MicroSD card component.

When the code is finished in this function it encounters the closed brace and returns back to the
setup() function. This completes the setup function and the software continues on the loop()
function.

Initialization of the BME280 Weather Sensor
The software is now ready to start initializing the various sensors on the test stand, with the first
being the BME280 weather sensor. We know that the performance of a model rocket motor can
be influenced by the weather. This is one reason why the NAR Standards requires all rocket
motors being certified are performed in a stable consistent environment. But we often fly our
rockets in weather that is not the same as that during certification testing. This sensor reads

50 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

barometric pressure, temperature, and humidity. This is recorded at the time of ignition and
allows the user to identify changes in performance.

During the initialization process the software checks for the presence of the sensor. If it doesn't
find the sensor it displays errors on the three displays that are available. If it finds the sensor it
reports that the sensor has been initialized. The results are reported in the system log.

Testing the HX711 Load Cell Amplifier
The Load Cell requires an amplifier to make the pressure readings on the load cell visible. The
HX711 load cell fills this role. During setup, the amplifier is tested for proper function. If it
completes the process successfully, this is reported on all three screens. If it is not successful, the
errors are reported. The results of the test are reported in the system log.

Initialization of the Fire Control System
Unlike the other setup functions, this function does not involve a sensor. Instead it is setting up
the Arduino pins to watch for the pressing of various buttons on the Remote Head. This is
accomplished by setting the pins for the Start button and the Fire button. The pin for the Fire
relay (located at the test stand) is set up as well. Once this is completed it is reported on the
screens and the data is reported to the System Log.

All Systems Initialized
At this stage of the process all of the systems have been initialized and are ready for use. This
function reports the success on all screens and makes a notation in the system log. It also lets the
user know that they can now press the green button on the remote head to start the process for
motor test.

This completes the setup() function. Next is the loop() function which will we cover in the
next chapter.

51 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

08
The Loop() Function
The loop() function is where the typical Arduino program spends the bulk of its time. As
indicated by the name of the function – loop() – the software stays here running through the
code listed in this function. When it reaches the end, it doesn’t stop but returns back to the
beginning of the loop function to do it all over again. This type of layout works very well when
you want to collect data from sensors on a regular basis.

void loop() function
Below is the entire loop() function for the Test Stand.

void loop()
{
 // ===
 // Show time on the LED display
 ledClock();

 // Clock updates display once every second to reduce flicker
 currentMillis = millis();
 if (currentMillis - lastExecutedMillis >= 1000)
 {
 lastExecutedMillis = currentMillis; // save the last executed time
 lcdDateAndTime();
 }

 // Check for button selection
 if (digitalRead(pinCalibrate) == LOW) loadCellCalibrate();
 if (digitalRead(pinStartButton) == LOW) motorPrepAndTest();
}

The loop() function starts by calling the function ledClock(). This function displays the current
time on the 4-digit, 7-segment LED on the remote head.

The next section updates the LCD screen once a second. It performs this function by getting the
current time in milliseconds. If less than 1000 milliseconds (1 second) has passed, it exits this
section. If however, more than 1000 milliseconds has past, it will update the current time on the
LCD screen. The current time is saved in the variable lastExecutedMillis and now this time
is checked against the current time to see if more than 1000 milliseconds has past. This routine
helps to reduce the flickering of the LCD screen.

The bottom section checks to see if the Calibrate button or the Start button has been pushed.
When the calibration button that is selected, the program will jump to the calibration function
and take the user step-by-step through the process of calibrating the load cell.

52 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

When the Start button is pushed, it begins a series of function calls that takes the user step by
step through the test process. This includes entering data about the motor, the actual firing of the
motor and collecting data, along with results data.

Until one of these two buttons is pressed, the loop function will continue on, updating the time in
both clocks.

53 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

09
LEDs, Buzzers,
Clocks and Displays
Before we drill down into the functions that allow the test stand to function, we want to look at
the supporting functions. These functions (LEDs, buzzer, etc) are used by a number of other
functions throughout the program.

The RGB_LED_Lamp_Settings Tab
The first set of functions I am going to discuss are located on the RGB_LED_Lamp_Settings tab.
These lamps are used to provide both information and warnings about what is occurring around
the test stand. Unlike most of our other tabs that contain just a single function, this tab contains a
number of functions. However, all of these functions relate to the display of the LED lamps on
the test stand.

RGB Colors
The first four functions determine the color of the RGB LED bulbs. The last three functions
determine the state of the bulbs. The code snippet below is for a single color RGB LED bulb

void rgbRed(void)
//Solid red lamp
{
 valueRed = 255;
 valueGreen = 0;
 valueBlue = 0;
}

The color displayed by the bulb is determine by the amount of light emitted by the three bulbs
within the RGB LED. In the snippet below we see a similar set of codes, this time mixing red
and green to create yellow.

 valueRed = 255;
 valueGreen = 70;
 valueBlue = 0;

LED Lamp States
The next two functions create either a steady burning lamp, rgbSteadyLamp(), or a flashing
lamp, rgbFlashLamp(). These functions are used to get the user's attention through the LED
lamp. For example, if the MicroSD card fails to initialize, the following code for LED color and
status is executed;

54 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

// Show steady red lamp
 rgbRed();
 rgbSteadyLamp();

The function call rgbRed(); provides the values for the RGB LED bulb to display a red color.
Then the function call rgbSteadyLamp(); executes the code for the lamp to remain on in a
steady fashion.

The final lamp state is used to add a strobe effect to the RGB LED bulbs. This mimics the
warning strobes that are familiar around hazardous environments. In this case the function is
used to get the user's attention when the test stand enters a 'yellow' or 'red' condition.

void rgbStrobeLamp(void)
{
 for (int x = 1; x < 50; x++)
 {
 analogWrite(RED, valueRed);
 analogWrite(GREEN, valueGreen);
 analogWrite(BLUE, valueBlue);

 delay(15);

 analogWrite(RED, 0);
 analogWrite(GREEN, 0);
 analogWrite(BLUE, 0);

 delay(500);
 }
}

These are just some examples of what can be accomplished with the RGB LED lamp. By
adjusting the values for the red, green and blue components of the bulb, various other colors can
be created. You can also create different flash patterns by varying the lengths and number of
flashes. For example, you may have a minor sensor warning that you want to be made aware of.
You could change the color to yellow and flash the bulb 3 times, pause, then flash once and
repeat the pattern. Using the combinations of colors and flashing patterns you can create an
almost unlimited number of arrangements.

55 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

10
Writing Data to a SD Card
If you have read any of our previous Project Manuals where we used the A-PAM (Arduino
Primary Avionics Module) this chapter will be familiar to you. However, what sets this project
apart from the others is that here we are writing to three different files rather than just one. First I
will look at the Information Data Log. Then I'll discuss the Motor Log and the System Log, how
they are similar and how they differ.

Information Log
The Information Log is designed to record the responses the user provides to the questions asked
during the preparation and shutdown phases of the test. This includes things like the location of
the test, the size and mass of the motor, if a CATO occurred, etc. The data is stored as "plain
text" which can be read by any text editor/word processor on any computer system.

Each time the user responds to a question you want to save that information. The method I use is
saving it to a MicroSD card as a plain text file. Each time a new piece of information is provided
the Information Log file on the MicroSD card must be opened, written, and then closed.

Opening and Writing the File
The first line of code opens the file and sets it up to have data written to it.

File fileInfoData = SD.open(fileInfoLog, FILE_WRITE);

If the file can be opened, it will continue to next step of writing the data.

if (fileInfoData)

The function where the question was asked has taken the response and assigned it to the variable
dataString. The program will write the new data into the file. It then closes the file.

{
 dataString = sdInfo;
 fileInfoData.println(dataString);
 fileInfoData.close();
 }

Error Reporting
If there is an issue and the file can’t be opened, several items will occur.

• The software will attempt to open the System Log on the MicroSD card
File fileSystemData = SD.open(fileSystemLog, FILE_WRITE);

56 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

• It obtains the current time.
sdTimeStamp = String(timeMillis,10);

• If records the error to the System Log and closes the file.
// write error to sd card if possible
 sdMessage = "Info Data Log";
 sdResult = "Card Write Error";
 dataString = sdRTCStamp + "," + sdTimeStamp + "," + sdMessage + ","

 + sdResult;
 fileSystemData.println(dataString);
 fileSystemData.close();

• It indicates an error was encountered on the Serial Monitor.
// Show error on Serial Monitor
 Serial.println(F("Error opening Info data log..."));

• The 4-digit, 7-segment LED screen displays "FAIL"
// show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

• The LCD screen displays the error message
// show error on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Card Write Error"));
 lcd.setCursor(0,1);
 lcd.print(F("Opening Info Log"));

Regardless of whether the program was able to successfully write the data to the MicroSD card,
the software takes a 1 millisecond delay to allow the Arduino time to reset. The function then
returns to the function that made the call to write the data.

One thing that does not occur with this error is that the program does not stop. It records the
error, but then continues on. It is possible that despite having an error writing to the MicroSD
card, the software may be able to write the other data to the MicroSD card without issue.

Motor Data Log
This log records the force information of the motor while it is firing. The information is stored in
a type of plain text file called "CSV" or "Comma Separated Values". In this format, each data
point is separated by a comma. This is a common file format that can be read by just about any
spreadsheet or database program on any computer system.

The function starts off in a similar fashion as the Information Log, by opening the file to the
MicroSD card for writing. If the file opens and can be written to, the function deviates from the
Information Log function.

In the Information Log, the data point was ready to be written to the MicroSD card. Here, the
function must first get the data that from previous functions. This data has been stored in global
variables:

57 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

sdTimeStamp = String(timeMillis,10);
sdImpulse = String(scaleNewtons,10);
sdTotalImpulse = String(impulseTotal,10);

Once it has the data points, it then concatenates them into a single variable called dataString.
Now like in the Information Log, the data is written to the MicroSD card:

dataString = sdTimeStamp + "," + sdImpulse + "," + sdTotalImpulse;
fileMotorData.println(dataString);
fileMotorData.close();

If the file on the MicroSD card cannot be opened or written to, the software follows the same
error routine we saw in the Information Log. The error is displayed on the LCD screen, in the
Serial Monitor and written to the System Log. The software then continues as normal.

Lastly, as we saw in the Information Log, there is a 1 millisecond delay to allow for a reset.

System Log
The System Log collects data on the operations of the test stand system. The function for
recording these data points operates in a similar fashion to the Motor Log. Both are CSV files.
Both need to get the data points from other functions within the program and concatenate them
into a single data point.

The System Log uses the same coding for error reporting that we saw used in both the
Information Log and the Motor Log. The coding uses the same 1 millisecond reset pause and the
software continues running after the error is reported.

Despite using three different logs to record various aspects of the testing process, the basic
coding for all three functions is pretty much the same. The use of plain text for all three files
allows the data to be highly portable. It can be read by numerous programs on all types of
systems.

58 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

11
Motor Prep Sequences
When you press the green 'Start' button, it begins a series of function calls that ultimately end
with a completed motor test. Along the way the user will enter information about the motor, the
test site and more.

Getting Started
Once the start button has been pressed, the first thing the software does is check to make sure it
is an intentional press of the start button. It does this by checking to see if the pin for the start
button is still low. If instead it finds the pin has returned to HIGH, it assumes it was an errant
signal and returns back to the main loop. Otherwise it continues on with the current function.

/**
 **
 * *
 * MOTOR PREPARATION AND TEST SEQUENCE *
 * *
 **
 **/

void motorPrepAndTest(void)
{
 // if Start button is HIGH assume rogue button push
 if (digitalRead(pinStartButton) == HIGH)
 {
 return;
 }

Test Preparation
The next section is a series of function calls that are all part of getting prepared for the motor
test. Much like the setup() and loop() functions, this section conducts eight function calls. The
majority of these function calls are used to get information about the test from the user.

Motor Preparation Information
The first function we jump to is motorPrepInfo(). The program then lets the user know what is
going on. It does this through the LED segments, the LCD screen and the Serial Monitor.

At the beginning of the is local variables to spell out "PREP" on the LED screen and then it
displays that on the LED segments. Next it displays the Motor Preparation notice on the LCD
screen. Once this has been performed, it is time to start getting information from the user.

59 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Before we collect any inputs from the user, we clear the serial buffer. We don't want any errant
data to mess up our data collection.

// clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

With the serial buffer clear we can now ask for information. This is performed through the Serial
Monitor. It will display a series of questions on the Serial Monitor using the Print() statement.
The first question being asked is the location of the test.

// Display instructions on Serial Monitor
 Serial.println();
 Serial.println(F("Motor Data Entry: Location Information"));
 Serial.println();
 Serial.println(F("Enter the location where the test is being

conducted."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

You might have noticed the use of (F) in the print statements above. This is the "F macro" and on
a basic level, it is used to help save memory. When you only have small amounts of memory to
work with, any methods used to save some is sought after. The F macro you can only be used on
strings, and it can only be used on strings that do not change - there cannot be any variables in
the string.

Once the question has been displayed on the screen, we need to get the input from the user. The
next section of code performs this task.

// Get location for the motor test
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Location entered: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Test Location: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;

60 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

 sdInfo="";
 }
 }
 }

We need to wait for the user to enter some data and hit the enter key. We do this by setting the
variable resumeProcedure = false. As long as this variable is false, it will not go past the
'while' loop.

Next we check to see if anything has been entered into the serial monitor. If data is there,
Serial.available will be greater than 0 and we will read what has been entered and place this
in the variable sdInfo. We then check to make sure that there is something there to read
(sdInfo != ""), and if data is there is we display back to the user what they entered. The
software then writes this data to the MicroSD card by calling the function. With this question
answered and the data stored on the MicroSD card, we can let the program continue to the next
section by setting resumeProcedure equal to true. We also clear the variable sdInfo.

The remaining questions in this section follow the same basic procedure
• Display the question on the serial monitor
• Set up the 'While' loop
• Get the information from the Serial Monitor input
• Display what was entered
• Write the data to the MicroSD card
• Exit the 'While' loop and clear all variables

Using this basic setup, this section will ask the following two questions:
• Test stand elevation
• Name of manufacturer of the motor

That completes this section and the program returns back to the motorPrepAndTest() function.

Motor Casing Information
The next function call is to motorCasingInfo() which will obtain data on the motor casing. If
you look at the coding in this function, you will see that it follows the same pattern that we saw
in the Motor Preparation function. As before, the responses to these questions are written to the
MicroSD card.

In this function, the following motor data is collected:
• Case length
• Case diameter
• Condition of the case
• Mass of the case

Once this function is complete, it returns back to the motorPrepAndTest() function. From there
it jumps to the next function which looks at the rated impulse of the rocket.

61 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Impulse Information
This function is designed to perform a single task - to obtain the total impulse rating stamped on
the motor casing. Our other functions allowed for any text entry to be submitted, but here we
require a specific entry. The code is going to look at what the user entered and decide if it meets
our criteria. If it doesn't, it will wait until a proper entry is made. Once a valid entry is made, it
will finish the function.

When the function starts, it looks very much like our previous data entry functions

/**

 **

 * *

 * MOTOR PREP TOTAL IMPULSE SEQUENCE *

 * *

 **

 **/

void motorPrepTotalImpulse(void)

{

One of the first differences you will likely notice is that the instructions advise the user to enter a
specific character depending on the total rated impulse of the motor. The user is restricted to the
numbers 2 and 4, as well as the letters A, B, C, D, E, F, G

// ==

// Get motor total impulse information

 // Display Total Impulse entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Total Impulse"));
 Serial.println();
 Serial.println(F("Enter the letter for the total impulse of the motor
 being tested."));
 Serial.println(F(" - For 1/4A motors, enter '4'."));
 Serial.println(F(" - For 1/2A motors, enter '2'."));
 Serial.println(F(" - For all other motors (A-G), enter the letter
 designation."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

Now we are back to familiar territory. We see the resumeProcedure in use with a 'while' loop
being set up. We also see the familiar code to see if anything is available from the serial monitor,
and if data is present it is read.

 // Get total impulse of the motor being tested
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)

62 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

 {
 charInput = Serial.read();

The next part of the code is completely different from anything we have seen thus far. What
follows is a series of 'if/else if' statements

if (charInput == '4')
{
 motorTotalImpulse = 0.625;
 sdImpulseTotal = "1/4A";
}
else if (charInput == '2')
{
 motorTotalImpulse = 1.25;
 sdImpulseTotal = "1/2A";
}
else if (charInput == 'a' || charInput == 'A')
{
 motorTotalImpulse = 2.5;
 sdImpulseTotal = "A";
}
else if (charInput == 'b' || charInput == 'B')
{
 motorTotalImpulse = 5;
 sdImpulseTotal = "B";
}
else if (charInput == 'c' || charInput == 'C')
{
 motorTotalImpulse = 10;
 sdImpulseTotal = "C";
}
else if (charInput == 'd' || charInput == 'D')
{
 motorTotalImpulse = 20;
 sdImpulseTotal = "D";
}
else if (charInput == 'e' || charInput == 'E')
{
 motorTotalImpulse = 40;
 sdImpulseTotal = "E";
}
else if (charInput == 'f' || charInput == 'F')
{
 motorTotalImpulse = 80;
 sdImpulseTotal = "F";
}
else if (charInput == 'g' || charInput == 'G')
{
 motorTotalImpulse = 160;
 sdImpulseTotal = "G";
}

This 'while' loop uses a series of 'if/else if' to see if the user has entered a valid character. If no
valid character is entered, the program stays in the loop waiting for a valid entry.

63 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Once a valid character has been entered, we see values assigned to two different variables. The
first variable, motorTotalImpulse, stores the rated total impulse value as a number. This
number will be used later to calculate total burn time.

The second variable, sdImpulseTotal, stores the rated total impulse as a character. It will be
used later to create the total ratings for the motor.

To finish this function, the user data is displayed on the Serial Monitor as we have seen before.
The function being complete it returns back to the motorPrepAndTest() function, where it will
jump to the next function in the list.

Average Thrust
The next data point we need to obtain is the average thrust for the motor. This is printed on the
side of the motor itself. This data is collected through the motorPrepAvgThrust() function. This
function gets the user input using the same technique we have seen previously. Once the data is
entered, it is stored in two variables - motorAverageThrust is the data entry variable and
sdThrustAvg is used to write the data to the MicroSD card. The data entry is displayed and the
program returns to the motorPrepAndTest() function.

Delay Time
The next data item is also printed on the motor casing and it is the delay time. The function
motorPrepDelayTime() is used to collect that data using the same procedures that were used
earlier. However, near the end of the function we have a line of code that concatenates the Total
Impulse, the Average Thrust and the Delay Time into a single data point. This matches the same
format that is imprinted on the motor itself.

// Now that we have the full motor code we can write it to the Information
 text file

 sdInfo = sdImpulseTotal + sdThrustAvg + "-" + sdDelay;

With this new data point now created, it is written to the MicroSD card.

// Info Log for Test Area Cleared
 sdInfo = ("Motor Classification: ") + sdInfo;
 writeInfoDataToCard();

The function being complete, it returns back to the motorPrepAndTest() function.

Propellant Data
The next set of data points all deal with the propellant being used and it is collected in the
motorPrepPropellant() function. Here we collect data on the

• Type of propellant used
• Propellant mass
• Motor date or lot code
• Type of igniter used

64 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Lot codes are typically stamped on the motor. The type of propellant used in the motor and the
propellant mass will be found in the documentation from the motor manufacturer. This data is
collected just like the in the previous functions, so nothing new or unusual here.

Ignition Time
Following the data entry for the propellant, the next item deals with the length of time to keep
the relay open that sends current to the igniter. This is located in the motorPrepIgnitionTime()
function. The user is asked to specify a time limit between 3 and 10 seconds. The program uses
the same procedure as before to get the user's input.

Once the user enters a number, the software does something a bit different from the other inputs.
First it looks to see if the value entered is less than 3 seconds or if it is greater than 10 seconds. If
the input is not within that range it sets the ignition time to 5 seconds.

if ((timeFireRelay < 3) || (timeFireRelay >10))
timeFireRelay = 5;

Following this it displays the entry as expected. It does not report this to the MicroSD card. Now
finished it returns back to the motorPrepAndTest() function.

Calculating Data Collection Time
The motorPrepCalcDataTime() completes the last function call as part of the motor preparation
section. This function will determine length of time that data should be collected. We don't need
the system to be collecting data while the motor is sitting on the test stand and not doing
anything. This function determines the length of time needed to collect data based on the burn
time of the motor, the delay time of the motor and the relay time.

The function starts by declaring two local variables
• timeBurn
• timeMotor

First the program calculates the burn time of the motor by dividing the Total Impulse by the
Average Thrust. This is stored in the variable timeBurn.

timeBurn = (motorTotalImpulse/motorAverageThrust);

 Next it adds together the motor's Delay Time and the Firing Time.

timeMotor = (motorDelayTime + timeFireRelay);

To determine the total time, the program first adds timeBurn to timeMotor. This is multiplied
by 1000 to to derive a total time in milliseconds. Next an additional 1,000 milliseconds (or 1
second) is added to the total.

timeDataCollection = (((timeBurn + timeMotor) * 1000) + 1000);

65 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

This becomes the total amount of time we will collect data in milliseconds and is stored in the
global variable timeDataCollection. The clock starts the instant the relay opens and power
flows to the igniter. It will continue to collect data until the time period specified in the
timeDataCollection variable is reached.

As before, the data collection time is displayed and then the software returns to the
motorPrepAndTest() function.

66 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

12
Motor Load Sequence
The next set of functions deal with the loading of the motor on to the test stand, as well as the
pre-fire process. These functions are all called from the motorPrepAndTest() function. This is a
continuation of the function calls that we looked at in the previous chapter.

Getting Started
In the motorPrepAndTest() function we transition from the preparation phase to the loading
phase. This is seen in the code as a new header is displayed on the Serial Monitor.

// ==
// Show header on Serial Monitor
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F("Begin Motor Loading and Pre-Fire Process"));
 Serial.println(serialLine);

The program then calls for the next function, motorLoad().

Motor Load Checklist Function
The first thing part of this function is used to display the updated status. We see the declaring of
local variables that are used only within this function. These variables are used to spell out
"LOAD" on the 4-digit, 7-segment display on the remote head.

The next action that occurs is changing the color of the test stand's RGB LEDs. They are now
turned to yellow and will glow steadily.

 // Turn test stand LEDs to Yellow
 rgbYellow();
 rgbSteadyLamp();

Next we see that the clear white LEDs are turned on as strobes. We use the library MsTimer2 to
provide continuous flashing of the strobes, despite whatever else the code may be doing. This
allows us to set the timing and forget it until it needs to be changed.

 // Turn on white strobe lamps
 MsTimer2::set(500, ledWhiteStrobeLamp); // 500ms period
 MsTimer2::start();

The 4-digit 7-segment display displays "LOAD" using the variables declared above

// show "LOAD" on clock
 clockDisplay.setSegments(SEG_LOAD);

67 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The last display to be updated is the LCD screen. This is used to indicate that the motor loading
process is now underway

// show loading sequence in progress on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" Motor Loading "));
 lcd.setCursor(0,1);
 lcd.print(F(" In Progress "));

The serial monitor is used to display a motor loading checklist. It uses the same procedure that
we have seen elsewhere in previous functions to display the information on the screen. At the
end of the checklist, it ask the user to enter the letter 'V' to verify that the checklist has been
completed. The program will wait until the letter 'v' is entered and it will accept either an upper
case or lower case 'v'.

if (charInput == 'v' || charInput == 'V')

Once the verification has been enter the time of the verification is displayed on the serial monitor
and it is written to the System Log on the MicroSD card. Once again the program returns to the
motorPrepAndTest() function to get the next instruction.

Motor Mount Checklist Function
The motor mount checklist function is nearly identical to the last part of the motor load checklist
function. Both display a checklist to the user, and both ask the user to enter a 'v' into the serial
monitor to verify the checklist is complete. Both also write to the System Log when the checklist
verification is complete.

Load Cell Calibration Decision
The next function (motorRecalibrate()) looks at whether the load cell needs to be calibrated
prior to the test firing. There are two ways to calibrate the load cell - the first way is to hit the
'CAL' (calibrate) button on the remote head prior to starting the test and the second method is to
perform the calibration just prior to the test firing.

Using the same procedures as before, the user is asked if they want to calibrate the load cell (hit
'c' and Enter) or bypass the calibration process (hit 'b' and Enter). The user input is recorded to
the System Log on the MicroSD card. If the user decides to calibrate the load cell, the program
will jump to the function loadCellCalibrate().

Load Cell Calibration
The function loadCellCalibrate() performs the calibration of the load cell and offers the
option to store that data in the EEPROM. It begins will declaring the variables to display CAL on
the 4-digit 7-segment LED display, as well as variables used to the calibration calculations.

// declarations for calibration
 float knownMass;
 float newCalibrationValue;

68 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

 boolean performTare;
 unsigned long timeStabilizing;

The function will lead the user through the calibration process. If provides instructions through
the Serial Monitor and LCD screen as we have seen done previously. The software also records
the time the calibration process is started in the System Log and stored on the MicroSD card.
Once the tare is complete, it needs the weight (in grams) of a known object that is placed on the
load cell. This is also recorded in the System Log and stored on the MicroSD card. With the data
entered, the load cell library is able to calculate a new calibration value. Once again, this is
recorded in the System Log and stored on the MicroSD card.

The user is then asked if the new value should be saved to the EEPROM (Electrically Erasable
Programmable Read-Only Memory). This is memory that is stored and stays on the chip even
when power to the Arduino is turned off. If the user enters 'y' then the new value is saved and
used during subsequent tests. If the user answers 'n' then the currently stored value in the
EEPROM is used. This decision (and calibration value) is another data point that is stored in the
System Log.

When this has completed, the user is advised to remove the weight from the load cell. The
program returns back to the motorRecalibrate() function, and then back to the
motorPrepAndTest() function.

Clear Test Area
The motorClearArea() is the next to last function prior to starting the Fire sequence. It is very
similar to the other functions we discussed previously.

It begins with the variable declarations for the 4-digit 7-segment LED to display "TEST". The
RGB lamps are changed to red (the strobe is still flashing from earlier). The LCD screen warns
to clear the test stand area. The checklist for clearing the area is displayed on the serial monitor,
and the user is prompted to enter 'V' (for verified) when the checklist is complete. Once entered,
the time is written to the MicroSD card and the program returns to the motorPrepAndTest()
function.

Setting Up The Load Cell
The very last function in the preparation phase is the motorScalePreparation() function. Here
the load cell is prepared to collect data. The serial connection is cleared, the load cell is started,
the calibration value is accessed from the EEPROM and the load cell is updated with that value.

This concludes the preparation phase of the test. The program will now transition into the firing
sequence.

69 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

13
Fire Sequence
The Fire Sequence controls the actual firing of the solid rocket motor. It also uses other functions
to collect data on the test, the post firing sequence and what to do when an abort occurs. Before
the actual fire sequence begins we need to return one last time to the motorPrepAndTest()
function.

Transition to the Fire Sequence
When the program finishes the motorScalePreparation() function it returns to the
motorPrepAndTest() function. Here is where the transition begins. It starts by displaying a
notification on the Serial Monitor that the Motor Test Fire Process is beginning. It then calls the
fireSequence() function to start the test fire phase.

Fire Control Sequence
The program enters the fireSequence() function and it starts by declaring the local variables to
display the 5-second countdown in the 4-digit 7-segment LED screen. These are declared locally
as they are only used in this function, and this helps save memory.

The software begins by getting the current time that the Fire Control Sequence is started and
writes this information to the System Log. The LCD screen on the remote head indicates that we
are standing by for the Fire Sequence (countdown) to begin.

On the serial monitor, a short description is provided of the three columns of data that will be
presented as the test firing occurs. This is followed by a second set of instructions on performing
the actual firing and how to abort the test.

Waiting for the Fire Button to be Pressed
The program then enters a 'while' loop. We have seen this used previously where we waited for a
user to input information into the Serial Monitor. This time, we are waiting for the user to press
the Fire button. We do this by checking the status of the pinFireButton, which is Pin 7 on the
Mega2560 board. The pinFireButton was set to the builtin pull-up resistor on the Mega2560
board during the setupFireControl() function.

// Setup Fire pin for interrupt
 pinMode(pinFireButton, INPUT_PULLUP);

When the Fire button is pressed, it will return a 'LOW' reading. Once the software reads the
change in reading, it will exit the 'while' loop and continue.

70 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Fire Button Pressed
With the button pressed, the software notes the time and displays that the countdown has been
initiated on the Serial Monitor. It also records this information to the System Log. Finally the
LCD screen displays that the countdown is started.

The software now enters an if/else if loop to display the countdown. During each segment of the
loop the countdown is displayed in the 4-digit 7-segment LED and a short tone is sounded from
the piezo buzzer.

During each part of the loop the software checks to see if the Fire button has been released. It
does this by looking at the pinFireButton and determining if the pin is showing 'LOW' (the
button is still pushed down) or 'HIGH' (the button has been released). If it reads 'HIGH' the
countdown sequence is stopped and the program jumps to the abortTest() function (more on
this later in this chapter).

// Check for ABORT
// Fire button must remain depressed during countdown otherwise an ABORT is
 called
 if (digitalRead(pinFireButton) == HIGH)
 {
 // jump to Fire Abort Sequence
 abortTest();

Weather Data
When the countdown reaches 0 (zero), a number of activities occur. The first activity is a call to
the function fireWeather(). This obtains several environmental data points just prior to the
firing of the motor. This includes the air temperature, barometric pressure and humidity. These
three data points, along with the time, are then written to the system log. The program then
returns to the fireSequence() function.

Warning Displays
The 4-digit, 7-segment LED display will change to "FIRE". The LCD indicates that power is
flowing to the test stand. The serial monitor displays a similar message and includes the time.
The same data point is also written to the system log. Finally, the piezo buzzer is turned on to
provide an audible warning.

Supplying Power to the Test Stand
It is now time to supply power to the test stand. This is done by setting the relay pin to HIGH.
This allows power to flow from the battery pack up to the igniter, igniting the solid rocket motor.

Once the relay has been opened and power is flowing, the program calls on the function
fireDataCollection(). This will get the data from load cell. We'll take a closer look at the
data collection process in the next chapter.

71 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

ABORT
One scenario that can occur during a test is an abort. This may be accidental (where the user's
finger slipped off the button) or intentional (someone walked into the stay clear zone). When an
abort is detected, the program will jump to the abortTest() function.

The primary focus of this function is to advise the user of the abort through messaging on the
Serial Monitor, the LCD screen and the 4-digit 7-segment LED screen. The piezo buzzer will
also sound to identify the abort. The time of the abort is recorded in the System Log.

It should be noted that an abort does not indicate that the test stand is safe. The motor is still in a
state where it can be fired. For this reason the LED lamps still glow red and the strobes continue
to flash. Because the motor is still in a condition where it can be fired, the software will jump to
the abortRecycle() function, where the user can try again to perform the test.

Abort Recycle
This function is run right after the abort has taken place. It advises the user that the test can be
restarted when they are ready. The recycle will return to the Clear Test Stand Area function so
that the user can verify the area is clear before firing the motor. It assumes all of the data entered
previously is correct and nothing has occurred during the abort that would require any changes to
the data. This allows the user to continue the test without having to start over from the beginning.

Shutdown Period
When the data collection period has concluded the program calls the fireShutdown() function.
This provides a one minute time period for users to maintain their distance from the stand. There
are two reasons for this period:

• If there has been a misfire, you should wait one minute before approaching the test stand.
• Once the motor has stopped firing it is still hot and should be allowed to cool down

before touching and removing the motor casing

The function starts off by assigning the variables for the 4-digit, 7-segment LED. Here we see
the terms "STAY", "BACK", and "SAFE". These will be used later in this function.

The next bit of code turns the relay off. This is a safety in case the relay failed to turned off
earlier. This is an important safety factor in the event of a misfire. You want to make sure power
is no longer being sent to the igniter, and this extra line of code performs that function. The
buzzer is also turned off at this time.

Wait Period
We now enter the section of code that runs the 60-second wait period. It starts by turning the
RGB lamps to Yellow. Next it displays on the Serial Monitor that power has stopped flowing to
the pad, and this is also recorded to the System Log.

72 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Next, the user is informed via the Serial Monitor that a one minute post test safety period is
beginning and everyone should stay clear of the test stand until the "All Clear" is given. This
warning is also written to the Safety Log.

Wait Period Countdown
We now start two "for" loops that display the time left during this safety period. This "loop
within a loop" allows the 4-digit 7-segment LED screen to alternate the display of "STAY" and
"BACK", while the LCD screen displays time left in 5-second increments.

The first part of the loop uses the "safety" variable to countdown the overall time period of 60
seconds.

for (int safety = 60; safety > 0; safety -=10)

This lines starts with safety being equal to 60. As long as safety is greater than 0, each time
the loop comes back to the top it will subtract 10 from safety. Notice that no actual time is
looked at in this loop.

Next we have two loops that work within the loop identified above. The first loop displays
"STAY" in the 4-digit, 7-segment LED screen, while the LCD screens reports the time left in
seconds based on the value of the variable "safety". This loop counts the variable "x" for 1
through 5, with a delay of 1000 milliseconds (or 1 second) between each increment.

 // show data while looping for 5 seconds
 for (x = 1; x <= 5 ;x++)
 {
 delay (1000);
 }

When this loop is complete, it moves on to the next loop. This loop is very similar to the one
described above, except it displays a "BACK" in the 4-digit, 7-segment LED screen. The LCD
screens reports the time left in seconds based on the value of the variable "safety" with 5
seconds subtracted. This accounts for the 5-second loop executed above. Once again we have the
same"x" for 1 through 5 loop.

With both of these loops now completed, it returns to the top of the primary loop. The variable
safety will have 10 subtracted from its value, and these loops will continue until safety is
equal to 0. At that point the countdown loop will exit and the code will continue.

All Clear
With the conclusion of the loops above, the wait period is over and the "All Clear" is signaled.
The first thing we see is that the lights on the test stand are changed to green and the strobes are
turned off. On the Serial Monitor the "All Clear" is displayed and the System Log records that
the Post Test Safety Period is finished. The 4-digit, 7-segment LED displays the word "SAFE"
and the LCD screen indicates it is safe to approach the test stand. Finally, a short buzzer tone is
played to announce the updated status.

73 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

With the shutdown complete, the program returns to the fireSequence() function, where it
continues to the next section of the code and calls the postTestDataEntry() function.

Post Test Data
With the bulk of testing complete, there are a few data points that still need to be collected. The
postTestDataEntry() function uses the same method we have seen used earlier to solicit input
from the user.

The first question asked is if a CATO occurred during the test. This would be a catastrophic
failure of the motor. The user responds with a Y or N response. Next they are asked to enter in
the mass of the empty engine casing following the burn. Finally, the user can enter any
comments that they may have about the test. This is limited to a single line of text due to the
limitations of the Serial Monitor. The response to these three questions is noted in the
Information Log.

With these last questions answered, the testing session is complete. This is noted on the Serial
Monitor and is recorded in both the System Log and Information Log.

The program now returns back to the loop() function and will display the date and time on the
LCD screen and the 4-digit, 7-segment LED screen.

Followup Testing
So what if you want to perform another test of a similar or even different motor. You have two
options:

• Press the Start Button and the program will begin asking the initial questions about the
new motor and will repeat the testing process

• Press the Reset Button to reset the Arduino and start the process over, including the
initialization of all of the sensors.

Our recommendation is to use the Reset option. This allows you to have a record showing that
the system's components were tested and passed prior to testing, and all the data is kept in an
organized fashion.

74 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

14
Test Data
The primary objective of the test stand is to collect data on the performance of the rocket motor.
This data collection is performed in the function called (appropriately enough)
fireDataCollection(). However, the function does more than collect the performance data.

The function starts with a lengthy comment section that identifies what the function will
perform. It provides the formulas that are used. This information would be of help to other
programmers who may want to update or modify the code.

Data Collection
The function fireDataCollection() is designed to primarily record the data from the load cell
during the firing of the rocket motor. The function pulls two data points:

• The time stamp when the force data was collected
timeMillis = micros()/1000000.f;

• The amount of force exerted on the load cell in Newtons. The force is reported in grams,
and the software then converts grams to Newtons
scaleNewtons = loadCell.getData() * 0.009806f;

It then does several calculations before it gets the next load cell force data point:
• Elapsed time since last data collection

timeElapsed = timeMillis – timeLast;

• Current impulse in Newtons
impulseSingle = scaleNewtons * timeElapsed;

• Total impulse in Newtons
impulseTotal = impulseTotal + impulseSingle;

Next, it displays that data on the serial monitor and writes that data to the Motor Log on the
MicroSD card.

The program then checks to see if the relay supplying power to the igniter needs to be turned off.
If the elapsed time has exceeded the relay time period, the relay is closed by setting the relay pin
to 'LOW'. The buzzer is turned off by setting that piezo pin to 'LOW' as well. This is recorded on the
System Log and displayed on the Serial Monitor.

Finally, the software checks to see if the elapsed time to collect data has been exceeded. If the
time has been exceeded it will display this on the Serial Monitor.

75 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Data Collection Time
There is a lot going on in this function. It is one of the busiest functions in the entire program.
Yet in testing we found that average time between load cell readings was 0.090 milliseconds.
While this is fairly fast, you may want to have shorter times between readings. To accomplish
this you can try several things.

• Eliminate any calculations during the data collection period.
With this, all that is done is to collect the load cell reading in the native gram format
along with the time stamp in milliseconds. After this raw data is collected it is imported
into a spreadsheet and the calculations are performed there. This would include:
◦ Convert grams to Newtons
◦ Elapsed time
◦ Single point impulse in Newtons
◦ Total impulse

• Eliminate data display on the Serial Monitor
Here you would no longer display the results of each data point collection on the Serial
Monitor screen. Any data collected would only be available on the MicroSD card.

There are a couple of things that you can't eliminate. The first is writing the data to the MicroSD
card. If you eliminate the Serial Monitor display only the MicroSD card has the data.

The next item you shouldn't eliminate is turning off the relay. This prevents damage to the relay.
In testing there was no appreciable delay when the software was calculating the relay cutoff time.

Finally, the calculation to determine when to stop collecting data should remain intact. If the test
stand is constantly collecting data even when the motor isn't firing it makes it much more
difficult to determine when the actual test started and ended.

Code Review Conclusion
This concludes the review of the code for the Test Stand. I hope this has helped explain what the
code does and why we made certain decisions. Hopefully I’ve been able to provide some ideas
that will help with your own projects.

76 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

15
Building the
Test Stand Base
With a working system using the breadboard, it was time to start designing the actual test stand.
We had a general idea of what we wanted, and now it was time to go from concept to hardware.

Using the original drawing as a baseline, we were already sure of several things:
• The test stand will be basically about 12-inches square
• The load sensor will be mounted near the center of the test stand
• We will use PVC pipe to create the mounts for the motors, and these would be able to be

exchanged using a threaded PVC pipe connection
• The majority of the electronics would be housed under the test stand and inside a 3D

printed housing. This will help keep the electronics free from the debris released by a
burning motor

• We will need a remote head to perform the actual firing duties to keep everyone a safe
distance away from the test stand.

• We will need to interface with a computer to power the electronics and to perform the
pre- and post-fire data collection.

• We will need a second power supply to provide the power to igniter the motor on the test
stand

It is important to understand that the Test Stand is not a single unit, but actually several
subassemblies. Each subassembly is built as a separate unit and then later incorporated into the
system. In this chapter we will look at the construction of the platform used by test stand. In later
chapters we will look at the motor mounts, the electronics located at the test stand and then the
remote head. Finally we will look at how they all fit together.

77 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Base
The base of our test stand was constructed from scrap countertop. During a renovation of our
bathroom, we saved the circular scrap pieces cut out for the sink. This oval was squared off and
become the platform of our test stand.

For your platform, you can use any type of material you wish. When selecting a material make
sure it is sturdy enough to handle the demands you will be placing on it. Also, use a materials
that you find easy to work with.

The most common is probably going to be plywood or MDF. When using wood or a wood type
product, consider applying some type of protectant to the top and sides of the wood. Ours had a
laminate on top, and then we filled in the sides with wood filler and painted them orange.

Spend some time on the base, as a number of items will be mounted here, and this is where the
bulk of the abuse from the testing will take place.

Warning Light Housings
There are four Warning Lamp Housings, with one located
on each corner of the base. The housings contain a 10mm
RGB LED bulb and a 5mm white LED bulb.

The lamp housings were designed using Tinkercad. I chose
to place the white LED (which will act as a strobe lamp)
above the larger RGB LED lamp. The inside of the
housing was hollowed out using the 'hole' function.

I didn't want just a plain, flat face on the housing. I decided
to add a bit of flair by indenting the face of the housing
slightly. This was done using the "hole" function too. A box
was created slightly smaller than the face. The ends of the
box were rounded and then inserted slightly into the face.
When everything was merged, we had the stylish indent we
were looking for. In fact, we liked the way this came out so
well we used the same technique on the continuity lamp
housing.

The finished design was exported as an STL file from
Tinkercad. This was imported into Cura for slicing. For this
print I use a layer height of 0.12mm (Super Quality) as I
wanted a really nice smooth print. I chose to print it in a
normal orientation. This requires that supports be provided
inside the housing. I used tree supports and this worked
really well.

78 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

The housings were printed using PLA+ filament in an orange color. We printed the housings one
at a time and when complete I was very pleased with the look and finish.

Wiring the Lamps
The LED bulbs needed to be wired within the housing
before the housings could be attached to the base. This
involved soldering a red, green and blue wire to the
corresponding leg of the RGB LED bulb. A white wire
was soldered to the white LED leg, and a black wire was
soldered to the common ground on both bulbs.

With the bulbs soldered, we attached them to the
breadboard and did a quick test to make sure all the
connections were good. With that confirmed, heat-shrink tubing was applied over each
connection.

Next, the lamps were inserted into the housing. The strobe
lamp is at the top, with the larger RGB LED underneath.
The common ground wiring between the two bulbs must
be curled around. Use care as you perform this to prevent
breaking the connection. With the bulbs in place in the
housing, they were tested again. With all the bulbs
working, a small amount of glue is applied to the inside of the housing to hold the bulbs in place.
Finally, 100Ω resistors are soldered onto each RGB LED wire and to the white LED bulb. No
need for a resistor on the ground wire. Make sure you leave plenty of wire coming off these
lampsas it has to stretch down the sides and then into the electronics housing.

Adjustable Legs
The legs I used are 3-printed. The basic design for
the legs came from the post "Adjustable leg
Furniture" by makarov_dimas on Thingiverse
(https://www.thingiverse.com/thing:6450953). He
has two separate designs, as well as multiple lengths.

I initially chose the 50mm Cap and Support design
(the Cap and Support is on the left in the picture).
The 50mm height was selected to allow plenty of
clearance for the electronics housing that would be
underneath the platform. I printed one leg to test the
size and fit. Given my rough estimate of the
electronic housing size, I decided to reduce the size of the leg and cap to 80%. This made the
attachment base of the leg small enough to fit on each corner of the stand and not interfere with
the electronics housing. The height was reduced to about 46mm which was still tall enough to
allow plenty of clearance for the electronics box.

79 | P a g e

https://www.thingiverse.com/thing:6450953

Project Vulcan - A Model Rocket Motor Test Stand

The final issue with the legs involved the position of the light
housings and the wiring for the lamps. The opening for the light
wires would be directly over the center of the adjustable leg
base. The base already had an opening at the top, but there was
no where for the wire to exit. To solve this issue, the STL file
was uploaded into Tinkercad, and a small round 10mm
diameter opening was added. This would be large enough to
allow the 5 wires to pass through.

With this last design change, we imported the modified STL
into Cura. Quality was set to a layer height of 0.16mm
(Dynamic), with no need for supports. Four legs and caps were
printed using PLA+ filament. We printed the legs in black, with
the caps in orange.

Load Cell
The final piece to be attached to the base is the Load Cell. The Load Cell will sense the amount
of force placed on it when the rocket motor fires. I wanted to make sure that the load cell
assembly was centered on the base, was mounted solidly, and could use different motor mounts
to test different size motors.

Load Cell Location & installation
To locate the center of the platform I drew and 'X'
from the opposite corners. Where they meet will
be the center of the board. Next I drew a line from
center to the edge using an 'L' square.

There are two threaded screw holes on each end of
the load cell. One set is hear where the wires are
attached. This end will be secured to the platform.
The other two ends are the floating part of the load
cell. This is where I will attach the motor mount.
Using this end of the load cell, I placed the X
between the two screw holes. I then marked on the platform where the opposite end screw holes
were located. This is where I will drill the holes for the mounting screws.

I had decided that my motor mounts would be created using PVC pipe. I had scrap pipe available
and the use of the screw-on ends would make changing motor mounts fairly easy.

I then needed a way to mount the female threaded PVC pipe to the load cell. I need something
that is strong and that will hold up to the ejection charge of the motor. I decided to use a standard
electrical box cover. This would be attached to the load cell using screws. I found the center of
the cover and then marked where the mounting holes would be drilled.

80 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

With the mounting holes drilled in the platform and
the motor mount base, I put the two together. The
screws for the motor mount platform were inserted
from the bottom of the load cell (the load cell will
have an arrow showing the direction of the force).
With these screwed in, I can bring in the base
screws from under the base and loosely attached
nuts to hold the screws in place. A second set of
nuts is put into place, and then the screws are
inserted into the load cell. Once in position, use the
nuts to secure the load cell.

In a similar fashion nuts are added to the screws for the motor mount. These are use to support
the motor mount platform. A second set of nuts is attached to the end of the screws to hold the
platform in place.

Motor Mount
Before mounting the PVC pipe connector to the metal plate, drill a hole on opposite sides near
the bottom. These will be used to allow any ejection gases to escape.

Place the PVC connector centered on the plate. Use
a pencil to mark where the outside diameter of the
PVC. Remove the connector.

To permanently attach the connector to the plate, I
used 30 minute epoxy. This would give me plenty
of working time and provide a strong bond. Begin
by using sandpaper to rough up the metal plate.
This will give the epoxy something to grip in to.

Next, using the pencil mark as a guide, apply small
strips of painters tape about 1/8-inch away from the line. Do this around the entire circumference
of the connector. Now apply a strip of tape to the bottom of the connector, leaving about a 1/8-
inch gap at the bottom.

Mix your 30-minute epoxy according to the
manufacturer's instructions. Apply and even coat to
the entire exposed area of metal plate (this extra
coat of epoxy will help protect the plate from the
ejection charge). Once you have this area covered,
press the PVC connector into the epoxy, centering it
in the opening. Once in place, remove the blue
painters tape. Let the epoxy harden completely.

81 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Once the epoxy has cured the motor mount platform
can be attached to the load cell. Use the two nuts to
secure the platform to the load cell.

The last item was the routing of the wires. I didn't
want them out in the open. These wires are very
thin and can easily be damaged.

I drilled a hole near the end of the load cell, along
the same side as the load cell wires. This would be
used to route the wires to the electronics housing.

To provide some protection for the wires, I cut a
small piece or rectangular plastic tubing. It was cut
at a 45-degree angle on each end. The wires are
threaded through the tube and into the hole in the
base.

To secure the plastic tube, I use 30 minute epoxy.
Modeling tape is used to clean up the edges of the
epoxy. Apply the epoxy around the base, making sure not to get any on the wires or into the hole.
Remember to remove the tape before the epoxy sets.

Base Complete
This completes the primary base assembly. At this point you have what looks a bit like a test
stand, with a bunch of wires hanging out. Set this assembly aside as next we begin construction
of the motor mounts.

82 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

16
Building the Motor Mounts
With the basics of the test stand base completed it is time to start work on assembling the motor
mount components. The motor mounts use PVC pipe to allow the various size motors to be used
interchangeably on the test stand. If you have built a model rocket in the past and glued together
a motor mount, much of this will be familiar. The main difference is the use of 3D printed
centering rings instead of cardboard or wood rings, and the use of PVC pipe instead of a paper
body tube.

Printed Motor Mount Centering Rings
The next task was to develop the motor mounts in Tinkercad. I would need at least five mounts
to accommodate the different size motors that could be tested

• 13mm diameter by 44 mm length motors (mini motors)
• 18mm diameter by 70 mm length motors (standard motors)
• 24mm diameter by 70 mm length motors (large motors C11 & D12)
• 24mm diameter by 95 mm length motors (large motors E12)
• 29mm diameter by 114 mm length motors (extra large motors)

The motor mounts are created using a combination of PVC pipe, standard Estes motor mount
tubes and engine blocks, 3D printed centering rings and motor retainers.

I began with the motor retainers by performing a quick search on Thingiverse. I made the
decision early on was to not use motor hooks to secure the
motors in the tube. Instead I will use the screw-on retainers.
This also makes it easier to adapt the 3D printed rings to the
PVC tubing. I found a number of screw-on motor retainers.
The three files I used were

• 18 mm motor retainer by Owen1975
https://www.thingiverse.com/thing:4346576

• 24mm motor retainer - part of the RTS Rocket by
jgutz20 https://www.thingiverse.com/thing:5324868

• 29mm motor retainer by JMillsCabrilloHS
https://www.thingiverse.com/thing:882815

I was unable to find a 13mm motor retainer so instead I
took the 24mm retainer and reduce it in size to 57% in my
slicer to fit the 13mm motor mount tube. The motor
retainers were sliced in Cura using a 0.20mm layer height
and 100% infill.

83 | P a g e

https://www.thingiverse.com/thing:882815
https://www.thingiverse.com/thing:5324868
./18%20mm%20motor%20retainer%20for%20Estes%20rocket%20by%20Owen1975%20on%20Thingiverse:%20https://www.thingiverse.com/thing:4346576

Project Vulcan - A Model Rocket Motor Test Stand

The centering rings were created in Tinkercad, using measurements from the inside diameter of
the PVC pipe and the outside diameter of the corresponding motor mount tube. The centering
rings were sliced using a 0.16mm layer height and 20% infill. Like the retainers they were
printed using PLA+ filament.

Assembling the Motor Mounts
To create the motor mounts I used standard Estes tubing and
engine blocks. We are going to make four different motor
mounts for our test stand; mini motors (13 mm x 44 mm);
standard motors (18 mm x 70 mm); ‘D’ size motors (24 mm
x 70 mm) and mid-power motors (24 mm x 90 mm). Each of
these will be interchangeable with the mount on the test
stand.

Note: While I did design a 29mm mount, I never did
get around to actually building one, but included it in
the drawings and instructions should you be
interested in creating one

Each motor mount has an engine block to keep the motor in
place. This is glued into the engine tube using wood glue, the
same way I would do it in a flying rocket. Once the block has dried in place, a fillet of glue is
applied around the top of the tube and then set aside to dry.

The 3D printed centering rings are epoxied to each motor mount tube, as is the threaded sleeve
for the screw on retainer. For this step we used 30-minute epoxy. This gave us plenty of working
time to get all of the pieces in place before the epoxy cured.

• First epoxy the threaded sleeve in place. This
goes on the opposite end from the motor block.

• Before the epoxy cures, install the centering
ring that is placed directly against the sleeve.
Secure this ring with epoxy.

• The second centering ring is epoxied into place
at the other end of the motor mount tube, flush
with the end of the tube.

• This is done for each tube in the set.
• Set aside and allowed to fully cure.

Once the motor mounts have completely cured I proceeded to cut the PVC pipe to size for each
motor mounts. To help mark the pipe as well as provide a guide for cutting the pipe, I printed out
the 1.25-inch PVC straight edge.

84 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

To determine the length of the PVC pipe for each
motor mount, I began by laying the pipe next to the
motor mount. The PVC Straight Edge tool was slid
onto the pipe and lined up to the edge of the motor
mount. A line was drawn around the PVC pipe. Using
a saw the PVC pipe was cut to size. Rough edges were
sanded smooth.

A test fit of the motor mounts was conducted to
confirm the fit and size of the PVC tube. You might
find that some of the PVC pipe is not perfectly round
on the inside and this can cause fit issues. You may need to sand the interior of the pipe and/or
the centering rings to obtain a good fit.

To secure the motor mounts in the PVC pipe 30 minute
epoxy is used. Begin by inserting the motor mount
partially into the PVC, with one of the centering rings
about 1/3 of the way in. Now apply epoxy to the inside
of both ends of the PVC pipe. Slide the motor mount
the rest of the way into the PVC pipe. Rotate the motor
mount as you feel it entering the epoxy. This will help
to evenly spread out the epoxy. Continue pushing the
motor mount into the PVC tube until the centering
rings are even with the ends of the tube. Wipe up any
excess epoxy that is squeezed from the tube. Let this cure completely.

The final step is to epoxy the PVC motor mount tube
assembly into the male PVC fitting. This allows you to
easily change out different size motor mounts on the
test stand. Before putting the two parts together, sand
the forward part of the motor mount assembly tube and
the inside of the PVC fitting. This will help the epoxy
stick better.

Once again I use 30-minute epoxy and place it inside
the PVC fitting. The motor mount assembly is pushed
into the PVC fitting, again rotating the assembly to help
evenly spread the epoxy. The motor mount assembly should bottom out on the fitting. Wipe
away any excess epoxy that is squeezed out. Let this cure completely. After the entire assembly
is cured I used a label maker to mark the size of the motor mount tube.

This completes the motor mount tube assembly. Our next task is to design and assemble the Test
Stand Electronics Housing.

85 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

17
Designing and Building
the Electronics Housing
Designing the electronic housing was the most difficult part of this project for me. Being able to
put all the electronics together on a breadboard is one thing. Thinking about how to create a
housing and layout the parts in a logical manner is something completely different.

I had to think about how to layout the
components so that the wiring layout
would make sense. I needed to have
access to the USB port of the MEGA
2560. I needed easy access to the
MicroSD card. I needed to have access
to the Relay, the HZ711 amplifier and
the wiring for the warning lamps

The housing would need to protect the
components inside. Some of this
protection would be provided by
locating the housing under the platform
of the test stand.

Finally I wanted the housing to be
flexible enough that I could expand the
functionality of the test stand if I desired. The Mega2560 has a large number of pins available
and the code is using less than 1/3 of available memory and only 26% of available storage space.

The other decision I needed to make was to use some type of ready made enclosure (like we did
when we used a toolbox in the Arduino Launch Control System) or should I try to build or 3D
print an enclosure. In the end I would go the 3D printing route.

A Step at a Time
I started with an STL file of an Arduino mount that I then imported into
Tinkercad. This became the basis for all of the other mounts that were
created for the housing.

Note: If you recognize what project this file comes from, please let
me know so I can give credit to the original designer. It has been a
couple of years since I started this project and I no longer have the
original project file. I have looked around the web but haven't
found it thus far.

86 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Using the tools available in Tinkercad allowed me to
modify the original STL. The edges of the mount were
removed and it was slimmed down. This also got rid of
the round hinge points and the slotted holder at the rear
was removed as well.

I needed to add a 'wall' to the front that would allow
access to the USB port. This also meant I had to allow
access for the power port even though it is not used with
the test stand. This part went through 5 design changes
and updates until we had a part that would work.

Individual Component Mounts
With the Arduino mount design finalized, I was able to use it as a basis to create a series of
mounts for each component. Some of
the electronic components were
already available through Tinkercad,
while others we had to create. Some
of the mounts went through several
iterations (such as the MicroSD card
mount) while other mounts would
work for different components (the
BME280 mount worked for the
BME280 sensor and the piezo
buzzer. To keep straight which
mounts went with which
components, the names were
incorporated into each mount. Once the designs were completed they were 3D printed and
checked for accuracy. Some mounts were fine with the initial design, while others needed one or
two modifications.

The Jigsaw Puzzle Design
At this stage of the design process I had a
number of individual pieces, but still no
coordinated overall design. I basically had a
number of jigsaw puzzle pieces. Now I needed
to figure out how to put them together. As
stated in the initial concept, the design needed
to make sense from both a wiring and overall
usage view point.

87 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

To start determining the layout I got out a
square piece of poster board to use as a base.
Then I began to lay out the different
components on the poster board. After
moving the pieces around to see where each
would fit and work best, I finally had a basic
design that would work.

I cut the poster board to size to make sure it
would fit under the platform and between the
legs - especially at the front of the platform.
The housing would be recessed from the
front of the platform for protection, but the
user still needs to gain access to the front to attach cables and use the MicroSD card. Once we
knew the housing would fit, I marked the location of each component on the poster board.

Back to Tinkercad
With the poster board layout in hand, along with a ruler, I began to transfer the individual
components into Tinkercad. First I
created a 'floor' the size of the poster
board and same thickness as the
component mounts. I added in 5 holes
that would allow wood screws to hold
the housing to the platform. Next came
the placement of the components on the
floor, based on the measurements taken
earlier.

At this point I had the layout I was
looking for, but I wasn't nearly done. I
still needed "walls" as I needed to
enclose the housing to protect the
electronic components.

I needed access openings for wires to run through at the rear of the housing. I had some rubber
grommets that I could use to protect the wires from the sharp plastic edges, and so the access
holes were sized to fit the grommets.

The housing would need a cover to finish protecting the components. This is simply a copy of
the 'floor' of the housing, trimmed to fit inside the four walls. I also added an opening over top of
the piezo buzzer to allow the sound to escape out of the housing.

Now I needed a to add supports for the cover and attachment points. I decided to use heat inserts
to allow the cover to be screwed down on to the housing. Additional supports were added around
the side walls to support the entire structure.

88 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

I wanted to add labels to the outside walls of
the housing that would identify what each
access port was for. However, the housing was
to be mounted under the test stand platform.
Before I could add to labels, the entire housing
had to be flipped 180-degrees.

The final design addition was to add the AAEN
logo to the side walls of the housing, as well as
on the floor of the housing. With the housing
design complete, all of the components are
grouped together in Tinkercad resulting in a
completed housing. This is then exported as an
STL file.

3D Printing
The housing was printed at 0.20mm layer
height. I also used tree supports around the
openings in the side walls. It was printed using
orange PLA+ filament. Using an Ender 3 V2 it
took over 18 hours to print.

Once the housing finished printing it was time
to print the cover. It was also sliced at 0.20mm
layer height. Like the housing I used orange
PLA+ filament. The cover took over 7 hours to
print.

Once the print was finished I added 5 heat set
inserts into the four corners and center back
support. These were inserted using an insert
tool attached to a soldering iron. When using
these inserts you don't have to 'push' the inserts
into the plastic. Instead let the heat melt the
plastic and the weight of the tool will push the
insert in place.

Once the insert is in, take a flat head
screwdriver and using the flat side of the
screwdriver push and hold the insert down
flush in the plastic. Once it cools the insert will
stay flush with the surrounding plastic instead
of slightly bubbling back up.

89 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Installing the Electrical Components
With the printing complete it was time to start
installing the electrical components. These are
secured to the housing using 2.5M nylon screws.

Even though I had the locations of the components
mapped out on paper, it was really handy to see
each component labeled inside the housing. This
made the process of installing each component
easier and quicker.

Once the components are in place it is time to start
the wiring process. Before I started wiring anything, I made sure to remove the battery from the
Real Time Clock.

Wiring
I knew some of the toughest wiring (at least for me
and my big old fingers) would be soldering the
connections for the DB15 connector. Additionally,
the majority of the connections would be located on
that same side of the Arduino as the DB15
connector.

In the picture to the right you can see the wiring for
the connector as well as the BME280 and the Real
Time Clock. The wiring is soldered to 90-degree
connectors and then inserted into the appropriate
pins on the MEGA 2560. You can also see in the
picture where I was getting ready to make a mistake
in my wiring.

Changing Pins
As I began to wire the various components I realized that some of the wires would not use the
same pins that we used on the breadboard. In most cases this didn't pose a major problem, I just
had to make sure that I made the appropriate changes to pin assignments in the code. For
example, the Relay pin was originally digital pin 6. However, based on the location of the relay,
it made more sense to move it to digital pin 49 at the rear of the Mega2560 board.

The same thing occurred with the warning lamps. The original RGB pins were digital pins 3, 4
and 5, with the strobe light using digital pin 2. Since wiring for the lamps would be coming in
towards the rear of the Mega2560, I wanted to move their pin assignments as well. In the picture
above you can see the 90-degree pins plugged into pins 23, 25, 27 and 29, which would operate
the R, G and B connections as well as the strobe.

90 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

It wasn't until testing that I realized my mistake. At first everything seemed to work fine. The
strobes flashed, the red and green illuminated just fine. But I could not get the yellow to work.
No matter how I changed the color coding in the software the lamp would only show red or
green. It took a while before I realized my mistake.

The RGB lamps need a special type of pin, one
that does pulse width modulation (PWM). Unlike
the standard digital pins that are either 'on' or 'off'
PWM pins allow you to adjust the amount of
voltage going through the pin. That lets us adjust
the amount of red or green being displayed so we
can create a yellow lamp. The pins I had plugged
into were standard digital pins. I needed to find the
PWM pins located at the rear of the MEGA 2560.
It turns out that the PWM pins are located at the
opposite end of the MEGA 2560, in pins 44, 45
and 46. In this case we had to extend the wiring to
get to the pins we needed.

When you find yourself in this type of situation,
make sure you double check that the pins that you
are looking at using will do the job. It would have
taken me less than 3 minutes to look up the pin configuration on the Arduino. It took a lot longer
to troubleshoot and fix.

Battery Pack and Continuity Lamp
A battery pack is used to provide power to the igniter. This power system is separate from the
rest of the Test Stand. I chose to use a 4 AA battery pack. The system needs a continuity check to
verify that the electrical connections are good.

The continuity lamp is a 5mm red LED lamp with a 1KΩ resistor. This is adequate for the Estes
igniters that I tend to use. If you are using a different igniter, you will need to make sure that the
resistor you use is adequate to prevent the igniter from lighting when power is applied.

The continuity lamp needs to be visible to the user. This meant it needed to be located on top of
the Test Stand platform. The wires going to the igniter also need to be on top as well. It was
decided to combine the two into a single housing.

A lamp housing was designed in Tinkercad that matched the look of the Warning Lamp
housings. The wiring for the continuity lamp and main power for ignition was run into the
housing. A set of banana clips was installed on the top of the housing for the igniter wires.

91 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Warning Light Wiring
The warning lights are not difficult to connect but
the long runs of wire around the edge of the test
stand platform create their own unique challenge.
The biggest challenge is how to keep the wires
organized and contained. I ended up using 3/8-inch
diameter split plastic protective wire wrap. I also
used 3D printed conduit T fittings.

The 3/8-inch diameter split plastic protective wire
wrap was purchased at Harbor Freight and was cut
to length. Use the split in the plastic to insert the
wires into the wrap. The conduit T fittings were
used to connect the protective wraps.

Lastly, any other exposed wiring (such as the load cell wires and the igniter wires) were covered
with heat shrink tubing to help protect them as well.

Platform Levels
The last thing I added to the platform is a set of RV camper levels to the side and rear of the test
stand. Using the levels and the adjustable legs I can make sure that the test stand is sitting level.
If the test stand is not level, the data gathered from the test firing may be skewed, as the force
from the motor exhaust will not be pushing directly down on the load cell, but instead hitting it at
an angle.

92 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

18
Building the Remote Head
The remote head went through several design changes before I settled on the one that was fairly
simple and easy to construct. I'll quickly review each design iteration, what I was trying to
accomplish, and why I moved on from that design.

Version 1
The first version that I designed was a simple rectangular box.
My initial thought was to create a handheld unit. In this design
the bottom is a thin cover that would screw onto the main unit.

The problem I ran into was the size of the LCD screen and LED
numbers were too small. Once I up-scaled everything to adjust
for size, it became too large to hold in your hand. So we packed
this design away and tried a modified version.

Versions 2 and 3
I spent a lot of time on Versions 2 and 3. The top of
the handset was extended out to accommodate the
wider screens. Version 2 had the angled top screen,
like in Version 1. However, the angled top resulted in
a much larger head to allow room for the electronics
under the display. To keep the handheld from being
unwieldy I decided to ditch the angled top and keep
everything flat.

The flat top design became Version 3. While I liked
the design, I began to realize that once I got all of the attachment points in place, to mount the
electronics and to hold the device together, there was no room inside the handheld. If I were to
increase the size to make it easier to install the electronics, it would be too big to hold in your
hand. It was at this point I dropped the handheld concept and started looking at a 'desktop' style
remote head that I could sit next to the laptop. That design would become Version 4.

93 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Version 4
I basically started over with the Version 4
redesign. I decided to go with a simple box
layout as my thought was the box would sit
next to the laptop that is being used to enter
information and record the data. I also
brought back the angled view top to improve
the visibility of screens when the box is
sitting on a table or bench. This version
incorporated the lessons learned in the
previous designs.

The larger size makes it easier to wire
everything inside the box. You don't feel like you are short on space. The top panel is where
most all of the electronics in the remote head will be mounted. I opted to not include the
mounting holes for these parts in the 3D print, instead deciding to use these parts to mark
mounting points and drilling out the holes. This also makes the 3D print more flexible in case
someone is using a different LCD or LED screen from the ones I used.

The first print of the box provided insight into some areas that needed improvement. I also added
support columns in the area of the buttons. This provided the rigidity I needed without having to
print out a thick top panel. We added a couple of additional mounting points to help improve the
rigidity of the remote head.

Printing the Remote Head
The design for the remote head is now
finalized and is ready to be printed.
The design was exported from
Tinkercad and imported in Cura. The
settings I use included a standard
quality setting of 0.2mm layer height
and an infill of 15%. On the top you
will need to add support. My first print
I used tree support and the results were
not what I had hoped for. For my
second print I used the 'Normal'
support structure setting. After slicing
the software indicated that the top print
would take nearly 9 hours. The base
structure showed a print time of nearly 16 hours.

94 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

I used PLA+ filament as this filament temperatures were increased to 215 C at the nozzle, and 60
on the bed. The PLA+ filament delivers nearly the same performance of ABS, but with the ease
of regular PLA. Like the drawing, orange filament was used for the top and black was used for
the base. Once the print was complete a black paint marker was used to highlight the raise
sections of the top.

Wiring the Remote Head
Compared to the test stand housing, wiring the remote head is much easier. For me, the hardest
part was soldering the DB15 connector.

The DB15 Connector
The wires from the DB15 connector are
soldered to a small section of prototype board.
Opposite the connections I soldered the 90-
degree pins. The pins are organized according
to their purpose. The prototype board is
attached to the base of the remote head.

The Cover
The top cover of the remote head contains the
4-digit, 7-segment LED clock, the 16 x 2 LCD
screen, and the four buttons that operate the test
stand.

The LED clock and LCD screen are attached to
the cover using nylon screws and spacers. The
Fire Button is attached to the cover using the
supplied screw on nut and washer.

The three remaining buttons are attached to a
prototype board. Additionally connectors for
power are soldered to the board and run to their
respective nodes for the LED clock and LCD
screen, as well as the ground connection for all
of the buttons. A set of cables is created using
jumper wires with female DuPont connectors.
These connect the LED clock, LCD screen and
all four buttons. The opposite ends will connect to the pins on the DB15 connector.

95 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Connecting the Cover and Base
With the connector cables created, it is a simple matter to
plug in the cables to the proper pins on the DB15 board.
There is plenty of room in the base of the remote head to
work with the cables. No need to have short cables and make
things harder.

With all the wire bundles connected, set the cover down on
the base and align the screw holes with the inserts. I used
2.5M stainless screws to attach the cover to the base. Make
sure you don't pinch any wires between the cover and the
base walls.

96 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

19
Assembling
the Test Stand
With all of the sub assemblies complete, it is time to put our test stand together. The main
components are the test stand platform, the remote head, the motor mounts and a computer. You
will probably want to use a laptop instead of a desktop computer.

Setup Area
When you are setting the system up, the first thing you want to do is put in a fresh set of
batteries. This will allow you to conduct a number of test back-to-back if desired. Fresh batteries
also tend to ignite quicker.

Next, look for an area that is fairly level. Use the adjustable legs and the platform levels to get
the platform in a stable and level position. If you are in your yard, a concrete pad is a good spot.
If you are in a field, try to find a level spot free of rocks and other debris.

You also want to make sure there are no flammable materials around. If you are in a field area,
make sure you clear away any dry grass or leaves from around the test stand. If you are in your
yard, make sure there is nothing around that can catch fire. With that being said, you should still
have a fire extinguisher close by should something catch fire unexpectedly.

Connections
Once you have the test stand setup, level and stable, insert a MicroSD card into the reader. The
card should already be formatted. You should consider using a blank card, transferring the data
off the card after each test onto the local computer.

You will need to connect the DB15 cable to the test stand, along with the USB cable. These
cables should be at least 10-feet in length for motors up through 'C'. Use longer cables for the
more powerful motors. Based the cable distance on the launch distance for the size motor you are
using.

The opposite end of the DB15 cable is connected to the Remote Head. Make sure you have a
good connection on both ends of the cable so that you don't have issues when trying to fire the
motor.

The USB cable will attach to your computer. When setting up your computer, make sure you
don't block any cooling vents. If you are outside on a hot summer day and block your cooling
vents, you could burn up your computer by overheating. Keep things cool.

97 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Motors and Motor Mounts
Test day is very much like a flight day. You may want to have your motors that you intend to test
prepped, just like you would if you were going flying. Having the motors prepped will make it
quicker to change out motors between tests.

If you are planning on testing more than one size motor, make sure you bring the appropriate
motor mounts. Again, this will help testing proceed faster.

Accessories
It is not uncommon to video your motor tests. During flights we barely see the motor as the
rocket flies off the pad. During testing you can see the motor's performance during the entire
burn. You may learn even more about the motor performance by watching video of the test in
slow motion. This may reveal things like huffing or uneven burning.

Because the motor doesn't move from the platform, you can setup your camera on a tripod so
you get a nice steady picture. This also means you can get the camera as close to the pad as you
want. In addition to the tripod you may consider placing a piece of clear plastic in front of the the
camera. This will help protect the camera lens.

Similarly, if you plan to live stream your test, you may need an additional computer to handle the
extra cameras and the streaming software.

98 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

20
Conducting a Motor Test
With the Test Stand assembled, you can begin booting the system to conduct the test.

Start by booting the computer and opening the Arduino IDE. At the test stand, insert a MicroSD
card into the electronics housing on the Test Stand. Now plug in the USB cable to the computer
to start the boot process of the Arduino Mega2560. With the IDE up and running, open the Serial
Monitor. You computer is now ready.

Mega2560 Boot
As the Mega2560 initializes, the Serial Monitor will display the current status of each sensor as it
comes on line. The first few lines displayed on the Serial Monitor show the name of the software
and the version number.

The next component to be initialized is the Real Time Clock. It will display the current date and
time on the Serial Monitor. If needed you can adjust the date and time to match the clock on your
computer.

The next component to be brought on line is the MicroSD card reader/writer. This is followed by
the BME280 environmental sensor and the Load Cell with the HX711 amplifier. The last
components to be brought on line is the Fire Control System. With the successful initialization of
all of these systems, the LED lamps on the Test Stand will turn green. When you are ready, press
the green button to start the test procedure.

If any of these systems fail to initialize, the system will show the failure on the Serial Monitor as
well as on the Remote Head. All of the systems must be functioning in order to conduct a test.

Data Entry Process
Once the green 'Start' button is pressed, the Serial Monitor will begin to ask a series of questions.
They include:

• The location where the test is being conducted
• The elevation of that location
• The name of the manufacturer of the motor
• The length of the motor casing in millimeters
• The diameter of the motor casing in millimeters
• The condition of the case
• The mass of the motor in grams

All of these questions can be answer in different ways. For example, you may answer the name
of the town where the test is being conducted. You might add a GPS location, or perhaps an
address. Or you might use something like "Football Field" or "Backyard". The choice is yours.

99 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

What I would encourage is that you be consistent in your answers. For instance, if you are testing
in different locations that are at different elevations, I would try to be as specific about the
location as possible. If all of your tests are in your backyard, then indicating that should be
adequate.

The next three questions relate to the motor designation. this includes:
• Total Impulse
• Average Thrust
• Delay Time

If you are not familiar with how model rocket motors are designated, please refer back to
Chapter 2 on Model Rocket Motor Basics.

This figures, along with the ignition time entry, will determine how long data is collected on
your motor. Therefore it is important to answer these questions accurately.

The next three questions are asking about the motor composition. This includes:
• The type of propellant
• The mass of the propellant
• The lot number or manufacturer date

This information can be used when comparing different types of propellants for efficiency. The
mass of the propellant can affect the overall performance of the rocket, so two motors rated the
same but with different mass will have an impact on the how well the rocket performs. The lot
number or date code can be used to test the variances in the same motor classification
manufactured at different times. This information can also be helpful if there is a CATO and you
need to complete a Malfunctioning Engine Statistical Survey (MESS) report.

The last two questions deal with the igniter. They are:
• Type of igniter used
• Ignition time period

There are a number of different types of igniters available to the rocketeer from a wide variety of
manufacturers. There are also those rocketeers who like to modify existing igniters or make their
own.

Finally you are asked how long should power be sent to the igniter. You should enter a number
between 3 and 10 seconds. If you enter a number outside this range, the program will default to 5
seconds. As noted earlier this is one of the inputs that will determine how long data is collected
on your motor. Therefore it is important to answer this question accurately.

With the information entered, the program will display on the serial monitor the length of time
that data will be collected in millisecond

100 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

All of this is used to help catalog the various motors that you are testing. While the thrust curve
is the main information most people are looking for from the test stand, a more complete picture
of motor performance is obtained by entering in all of the data requested.

Pre-fire Process
You are now entering the pre-fire process. Instead of inputting information about the motor, you
will be given a checklist and asked to verify that the checklist is complete.

Motor Loading Checklist
This checklist is the first one to be displayed. Here it is confirming that a motor has been
installed in a motor mount, that it is secured in place with a retaining ring, and that the igniter is
installed.

Once this checklist is complete, you would enter a 'V' (for "verified") into the Serial Monitor and
press ENTER. The date and time is then displayed on the Serial Monitor and in the System Log.

Motor Mount Checklist
With the motor secured in the mount, it is time to secure it to the test stand. The first step in this
process is to look at the threaded adapter ring attached to the load cell. This is where the motor
mount will be installed. Make sure that it is relatively clean and free of debris. As part of this
check the openings that the exhaust gases will escape through are clear. If these are not clear, it is
possible that you could have a pressure buildup in this area.

Next you want to screw the motor mount into the threaded adapter. You should make sure that
the mount is secure and will not become disengaged from the mount.

Next, we need to attach the micro clips to the igniter. Neither the clips nor the igniter leads
should touch each other. With a good connection to the igniter, the continuity lamp should now
glow red.

With the checklist is complete, enter a 'V' into the Serial Monitor and press ENTER. The date are
time are again displayed on the Serial Monitor and recorded in the System Log.

Test Stand Calibration
It is now time to calibrate the test stand. If you have calibrated the test stand earlier using the
same motor test setup, you can bypass the calibration process. However, it is recommended that
the calibration be conducted for each test to ensure accurate test results.

Tare
The first part of the calibration process is to get the weight of the motor setup on the test stand.
The weight of the motor mount assembly will be removed from the calculations so that only the
force of the motor will be recorded, and not the force of the motor mount weight and thrust
combined.

101 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Calibration Weight
The next step is to place a known weight on the test stand. The weight needs to be placed on the
load cell itself. Depending on the weight, you may be able to place it on top of the motor mount
or perhaps along the metal platform that attaches the adapter ring to the load cell. You will need
to enter the weight of this object in grams and hit the Enter key.

Calibration Value
The software will calculate the new calibration value and display it on the Serial Monitor. The
software will ask if you want to save this value to EEPROM address 0. If you enter 'Y' (for Yes)
the value will be written to memory. This makes it available for later tests if desired. You are
reminded to remove the calibration weight. The information is recorded to the System log.

Clear Test Stand Area
This is the last checklist prior to the test firing of the motor. You are asked to verify four things
in this checklist:

• Make sure everyone is a safe distance from the test stand
• Confirm that nothing is on the test stand (like your calibration weight you forgot to

remove)
• There should not be anything under the load cell. Any item under the load cell may

interfere with the movement of the load cell and result in bad data
• The vent ports on the adapter ring must be clear. This is one last check to make sure any

pressure from an ejection charge or other event doesn't result in an over-pressure event
but instead the pressure can escape through the vents.

Once these items have been verified, enter 'V' into the Serial Monitor and hit the ENTER button.

Motor Test Fire Process
You are now ready to conduct a test fire. On the Serial Monitor it will display an explanation of
the data that will be displayed in the three columns while the engine is firing. It will also display
the instructions on pressing and holding the red fire button through the 5-second countdown.

When you first press the Fire button down, the date and time is noted in the System Log. The
buzzer will sound on each second of the countdown. The LED clock will show the countdown as
t-5 through t-0.

Abort
If you release the Fire button before the countdown reaches 0 an abort will occur. This stops the
firing process and no power will be sent to the igniter. The date and time of the abort will be
noted in the System Log.

When an abort occurs you have the option to recycle the system and continue the countdown.
When you recycle the system will return to the Clear Test Stand Area section. You will need to
verify that the test area is clear and then you can go through the countdown again to fire the
motor. No data is lost during this process.

102 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Motor Firing
If you press the Fire Button and keep it pressed down through the countdown at t-0 the relay is
opened and power will begin flowing to the igniter to ignite the motor. This is noted in the
System Log and the data from the load cell will begin to appear on the Serial Monitor. During
this time the Serial Monitor will display a notice once the relay is closed and power stops
flowing to the igniter.

Data will continue to be displayed on the Serial Monitor. This data is also recorded to the Motor
Log as a CSV (Coma Separated Values) file. Once the time expires for the data collection period
this will be displayed on the Serial Monitor and the System Log.

At this point in the test process, the motor firing is complete.

Post Motor Test Firing
With the firing of the motor complete, the program enters a 1-minute post test safety period.
During this time no one should approach the test stand. This period would also be used if there
was a misfire. You would wait the 1-minute safety period before removing the bad igniter and
installing a new one.

CATO
Following the 1-minute safety period, the program will ask if the motor suffered a CATO
(catastrophic failure). The majority of the time, you will answer 'No' as the motor will burn as
expected.

If you do experience a CATO, it should be reported to motorcato.org. This is the official NAR
site to file a MESS (Malfunctioning Engine Statistical Survey) Report. This helps the NAR track
any issues that may be affecting a specific series of lot of motors. Most of the information
needed about the motor you can have readily available as you have entered it as part of the
testing process.

Case Mass
Here you weigh the empty case and report that mass into the program. This data should be
reported in grams as were the previous reports.

Comments
The last data entry point is for comments. Because you are entering this information through the
Serial Monitor, you only have a single line to write your comments. You should make them short
and concise. You can always expand on the comments later when you write your report.

Test Complete
The test is now complete. At the bottom of the Serial Monitor it provides a statement indicating
the test is concluded and the date and time. This information is also recorded in the System Log.

103 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

If you wish to conduct another test, it is recommended that you push the 'Reset' button on the
remote head. This will start the entire process over again. It will also verify that the sensors are
still on line and functioning properly.

104 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

21
Tactics to Improve
the Test Stand
If you have followed along from the beginning of the manual, you should now have a working
Model Rocket Motor Test Stand. You have seen how we designed, developed and built this
system. However, like any project, it is far from perfect, and there are things that, in hind sight,
we could have done better. Let’s take a look at some of the changes, updates and improvements
that can be made to the system.

Hardware Updates
Hardware updates are almost always harder to incorporate into a finished project than software
updates. There are the questions of where will the hardware be mounted, are there available pins
on the Arduino that can be used, will any of the current hardware need to be moved, removed, or
replaced?

As we look at potential updates to the stand, consider adding them early in the build. If
something needs to be moved or added, it is easier to go into Tinkercad and make the new
mounts before the item is 3D printed, instead of trying to figure out how to add it afterwards.

With those thoughts in mind, here are a few things we thought of that could be added to the test
stand:

• Add temperature sensor for outside case
• Add temperature sensor for exhaust gases
• Add radio link instead of DB15 cable
• Incorporate a Raspberry Pi

Software Updates and Changes
Software changes are usually easy to implement and easy to revert back if things don’t go as
planned (as long as you make the changes to a copy of your program). It is one of the big
advantages of software based electronic systems.

You still have to be careful with software updates. Will your change create a conflict with
another section of code or piece of hardware? Is there enough memory or storage space for the
updates you are considering? Will the changes result in a slow down of sensor readings, resulting
in a reduction in the amount of data you can collect?

These are just a few of the issues that you can run into when updating or changing the code. That
doesn't mean you shouldn't try, it just means you need to be aware of potential conflicts and

105 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

issues. Besides, you still have the original version of the code available (you were making the
changes to a copy, weren't you?).

Let's look at some of the changes you might consider incorporating into the test stand software.
• Replace the serial monitor with a stand alone program (python??)
• Add option for time zone (such as UTC or EDT) with the RTC
• Confirm data inputs from user are correct, and allow the user to reenter the information if

needed
• Allow adjustment of brightness on LCD and LED screens
• Allow load cell to be used for weighing motors

Make The Project Yours
This project will be much more valuable to you if you try to make updates and changes to what
we have presented here. Perhaps you realize there is a better way to collect the data. Maybe you
find a better algorithm to process the motor data. Try it, and see how it works. If you have
something that works better, let me know about it so I can incorporate it into later versions of the
project.

106 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

22
Conclusion
This brings to a close our Model Rocket Motor Test Stand build. This build took significantly
longer than I expected, mostly because 'life' got in the way. Other things came along that took
priority and there were times when the project set on the shelf for several months, collecting
dust. Now that we have finished the build, I am very happy with how it turned out.

Throughout this build I have tried to let you to see what we did for several reasons:
• Electronics is a new hobby to me. The use of Arduino has made creating electronic

projects significantly easier, at least for me. I hope that this project helps you feel that
you can do a project like this as well.

• I wanted to you to see how the design process, especially the remote head, changed over
time. We included the initial design of the test stand, and showed had it changed over
time.

• For me, transitioning from the breadboard to the electronics housing proved to be one of
the more challenging aspects of this project. Building on a breadboard allows you to
move things wherever you want, while working within the confines of the electronic
housing forces you to be much more disciplined, and that is a good thing.

• This project expanded our use of Tinkercad and 3D printing. I had to learn how to create
parts (like the PVC connector) so that we could create an accurate representation of the
test stand. I had to think differently about to design the electronic housing, prior to
soldering the first wire connection.

• This was my first use of heat set inserts. This meant not just using inserts, but we ended
up making a stand for the tool that we used.

• Creating a test stand, like the avionics projects I built previously, opened another area of
rocketry that I couldn't participate in before. This is one of the reasons why I really enjoy
what the Arduino has been able to open up for folks like myself.

After each project I find myself looking back and seeing things I could change to make the
project better. That's one reason why I include a chapter on potential hardware and software
improvements. If you are looking at making this project, keep these updates in mind as it will
help make your project better than the one I built - and that's a very good thing!

I can see where my CAD skills are improving while using Tinkercad, but I still have a number of
areas where I can improve. One major area that I need to improve upon is the design of multipart
components and how they are attached. Sometimes, the accuracy of my screw holes left much to
be desired.

I am also looking at changing CAD programs. While I have been able to create some decent
drawings, especially with this project, I can't get a true CAD drawing using Tinkercad. That
means I need to be looking at different CAD software. Being a proponent of open source
software, that will likely mean learning FreeCAD.

107 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

One of the nice things about Tinkercad was that I was able to make the drawings available. The
problem is you can only get the drawings through the Tinkercad web site. If Tinkercad goes
down, the drawings cease to exist. By transitioning to FreeCAD, we can make the CAD
drawings available and will no longer be dependent on a company maintaining a server.

Another area that I am working on is my wiring layouts. As I alluded to above, working on the
breadboard and routing wires to the various components is pretty easy. You can put stuff
anywhere and as long as the right wire attaches to the correct pin of the component the system
works. This changes dramatically when we start running wires inside of boxes. How the wires
are run, where the components are placed, how to we take things apart, all becomes much more
important. I worked a bit harder on this project to make the wiring layout make sense. Could I
have done it differently or better? I'm sure I could, as hindsight helps us see these issues.
Hopefully this project will change how I approach the next one.

This is now the fifth model rocketry related electronics project I have documented. Looking back
at my previous projects I can see where I have gotten better in some things. My soldering has
improved and I am trying to think more about how the project goes together. My programming
in Arduino also seems to be improving. I still have a long way to go, and I will hopefully
continue to improve in these areas and others.

In one of the previous Project Manuals I talked about what I am looking at creating in the future.
That response is still a good one:

"One project I hope to do in the near future with the Arduino is to try some basic
telemetry during flight. I am excited about the thought of seeing flight data transmitted to
a ground station, see the data displayed on the screen in near real time. This presents all
sorts of challenges, from the type of radio system to use, to the type of Nano board to use,
to programming the ground station to display all of that data. This type of project will no
doubt expand my electronics and radio knowledge, but I think it might have me looking
into programming use Python and some of the add-ons to allow a good looking display of
the data. Can you see the challenges involved?

"The other thing I am looking at is going back to one of the first projects I built, the
Launch Control System. We have learned a lot since that first project, and I would like to
create LCS 2.0, incorporating many of the lessons learned on the original project and
incorporating new stuff we have learned since then. Who knows, maybe we can even
combine a couple of projects together for a full fledged 'Mission Control' project that
pulls all the pieces together."

The purpose of this project manual is to help you, the reader, create new and better model
rocketry projects. I hope it gets you to thinking about other projects that you can create, and not
just in rocketry. Use your skills you developed in rocketry to create other things that may not
have anything to do with model rockets. When that happens, you are really expanding your
talents, and that is a good thing.

108 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

Appendix

109 | P a g e

Project Vulcan - A Model Rocket Motor Test Stand

A1
System Drawings
These drawings show the final setup of the avionics module. The first drawing shows the
connections on the Test Stand platform. The second is the Remote Head.

110 | P a g e

111 | P a g e

112 | P a g e

A2
MEGA 2560
Pin Assignments

113 | P a g e

A3
Complete Code Listing
On the following pages is the complete code listing for Version 1.0 of the Model Rocket Motor
Test Stand. The subroutines are saved as individual “.ino” files, with the file name displayed in
the tab. The file/tab name is displayed at the beginning of each subroutine.

The complete code can be downloaded from our SourceForge repository

Test_Stand_V1.0.ino
/* ***
 * Project: Model Rocket Motor Test Stand
 * Version: 1.0.0
 * Description: This test stand is designed for black powder model
 * rocket motors from mini "T" motors through "F"
 * power motors. Test stand utilizes a single load cell
 * and a HX711 amplifer.
 *
 * Test stand includes a BMP280 temperature, humidity and
 * barometric pressure sensor which is displayed on an LCD
 * screen.
 *
 * Incorporates a RTC to display time on a 4-digit
 * 7-segment LED.
 *
 * Created: 05 January 2023
 * Updated: 28 September 2024
 *
 * Author: Robert W. Austin
 * (C) Austin Aerospace Education Network
 * License: GPL-3.0
 *
 * ===
 * Based on the following coding examples:
 *
 * TM1637 Clock Example
 * https://www.makerguides.com/tm1637-arduino-tutorial/
 *
 * Arduino - LCD I2C Tutorial
 * https://arduinogetstarted.com/tutorials/arduino-lcd-i2c
 *
 * BME280 Environmental Sensor
 * https://www.waveshare.com/wiki/BME280_Environmental_Sensor
 *
 * NM Rocketry Reviews Test Stand
 * https://github.com/daniel360kim/motorteststand
 *
 *
 * Datalogger (Examples -> (Examples for Any Board) SD -> Datalogger
 *
 * Calibration (Examples -> (Examples from Custom Library) HX711_ADC -> Calibration
 *
 * Read Load Cell (Examples -> (Examples from Custom Library) HX711_ADC -> Read 1x Load Cell
 *
 * ===
 * Pin configuration - for Mega 2560 board
 *
 * Peizo Buzzer

114 | P a g e

 * SIG A15
 *
 * Fire Button
 * Red 7 (D7)
 *
 * Load Cell Calibration Button
 * Cali 8 (D8) Calibrate
 *
 * Start Test Button
 * Start 9 (D9)
 *
 * HX711
 * DOUT 10 (D10)
 * SCK 11 (D11)
 * VIN 5V
 *
 * TM1637 4-Digit 7-Segment LCD Display
 * CLK 12 (D12)
 * DIO 13 (D13)
 * VIN 5V
 *
 * RTC Real Time Clock
 * SDA 20 (D20)
 * SCL 21 (D21)
 * VCC 5V
 * Address 0x57
 *
 * BME280 Environmental Sensor
 * SDA 20 (D20)
 * SCL 21 (D21)
 * VCC 5V
 * Address 0x77
 *
 * LCD 16x2 Screen I2C
 * SDA 20 (D20)
 * SCL 21 (D21)
 * VCC 5V
 * Address 0x27
 *
 * RGB LED lamp
 * Red 44 (D23)
 * Blue 45 (D27)
 * Green 46 (D25)
 *
 * Strobe LED Lamp
 * SIG 47 (D29)

 * Fire Relay
 * SIG 49 (D49)
 * VIN 5V
 *
 * SD Card
 * MISO 50 (D50)
 * MOSI 51 (D51)
 * SCK 52 (D52)
 * CS 53 (D53)
 * VCC 5V
 *
 **/

/**
 **
 * *
 * LIBRARIES *
 * *
 **
 ***/

// ===
// library required for the Real Time Clock DS1307

115 | P a g e

 #include <RTClib.h>

// ===
// library required for the TM1637 display
 #include <TM1637Display.h>

// ===
// library required for the 16 x 2 LCD display
 #include <LiquidCrystal_I2C.h>

// ===
// libraries required for the MicroSD Card Reader/Writer
 #include <SPI.h>
 #include <SD.h>

// ===
// libraries required for the BME280 Environmental Sensor
 #include <Wire.h>
 #include <Adafruit_Sensor.h>
 #include <Adafruit_BME280.h>

// ===
// libraries required for the Load Cell and HX711
 #include <HX711_ADC.h>
 #include <EEPROM.h>

// ===
// library required for flashing strobe lights
// regardless of other activities
 #include <MsTimer2.h>

/**
 **
 * *
 * DECLARATIONS *
 * *
 **
 ***/

// ===
// declarations for Program Version
 const int prgMajor = 1;
 const int prgMinor = 0;
 const int prgPatch = 0;

// ==
// declaration for serial lines
 const String serialLine =
"==";
 const String serialLine2 = "----------------------------------";

// ===
// declaration for loop counter
 int x;

// ===
// declarations required for the Real Time Clock DS1307
 RTC_DS3231 rtc;

// variiables for rtc - to hold data while SD card is iniated
 String rtcRTCStamp = "";
 String rtcTimeStamp = "";
 String rtcMessage = "";
 String rtcResult = "";

// variiables for clock sync - to hold data while SD card is iniated
 String syncRTCStamp = "";
 String syncTimeStamp = "";
 String syncMessage = "";
 String syncResult = "";

116 | P a g e

// variable for serial monitor date and time (sprintf)
 char bufferDate[12];
 char bufferTime[12];

// used for LCD clock refresh
 DateTime now;
 unsigned long currentMillis = millis();
 unsigned long lastExecutedMillis = 0;

// ===
// declarations required for the 16x2 LCD I2C
// I2C address 0x27
 LiquidCrystal_I2C lcd(0x27, 16, 2);

// ===
// declarations for the MicroSD card
 float timeDataCollection;
 String dataString = ""; // make a string for assembling the data
 // to the log

 char fileMotorLog[] = "MTRLOG00.CSV";
 String sdImpulse = "";
 String sdTotalImpulse = "";
 String sdTimeStamp = "";

 char fileSystemLog[] = "SYSLOG00.CSV";
 String sdRTCStamp = "";
 String sdMessage = "";
 String sdResult = "";

 char fileInfoLog[] = "INFLOG00.TXT";
 String sdInfo = "";
 String sdDate = "";
 String sdImpulseTotal = "";
 String sdThrustAvg = "";
 String sdDelay = "";
 //String sdData = "";

// ===
// declarations for BME280 environmental sensor
 Adafruit_BME280 sensorEnvironment;
 String sdTemperature = "";
 String sdPressure = "";
 String sdHumidity = "";

// ===
// declarations for LED bulbs
 const int ledStrobe = 47;

// ===
// declarations for RGB LED lamp pin numbers
 #define RED 44
 #define GREEN 45
 #define BLUE 46

// ===
// declarations required for Fire and Safety Switch
 const int pinFireRelay = 49;
 const int pinFireButton = 7;
 const int pinStartButton = 9;

 float timeFireRelay;
 boolean skip = false;

// ===
// declarations for pins to call calibrate and tare load cell
 const int pinCalibrate = 8;

// ===
// declarations for HX711

117 | P a g e

 const int serialDigitalOut = 10;
 const int powerDownSerialClock = 11;
 const int eepromAdressCalibrationValue = 0;

// declarations for calibration
 float knownMass;
 float newCalibrationValue;

 boolean performTare;
 boolean resumeProcedure;

 unsigned long timeStabilizing;
 char charInput;

// declarations for getting thrust data
 float timeMillis = micros()/1000000.f;
 float timeElapsed;
 float timeLast;
 float scaleNewtons;
 float impulseSingle;
 float impulseTotal;
 float timeData;
 float timeRelay;
 float timeNow;
 static boolean newDataReady = 0;

 HX711_ADC loadCell(serialDigitalOut, powerDownSerialClock);

// ===
// declarations required for the TM1637 4-digit display
 const int CLK = 12;
 const int DIO = 13;

 TM1637Display clockDisplay = TM1637Display(CLK, DIO);

// ===
// declarations for peizo buzzer
 const int buzzer = A15; // buzzer pin number

// ===
// declarations for motor specifications
 float motorTotalImpulse;
 int motorAverageThrust;
 int motorDelayTime;
// ===
// Constants for 4-Digit 7-segment display
 const uint8_t blank[] = {0x00, 0x00, 0x00, 0x00}; //Clear display

// Constants for FAIL
 const uint8_t SEG_FAIL[] =
 {
 SEG_A | SEG_E | SEG_F | SEG_G, // F
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_E | SEG_F, // I
 SEG_D | SEG_E | SEG_F // L
 };

/**
 **
 * *
 * SETUP *
 * *
 **
 **/

void setup()
{
 // ===
 // Initialize the serial port.
 Serial.begin(115200);

118 | P a g e

 // ===
 // Show Splash Screen
 splashScreenSerialMonitor();

 // ===
 // Initialize the LED 4-digit display.
 setupLedDisplay();

 // ===
 // Initialize the LCD 16x2 display.
 setupLcdDisplay();

 // ===
 // Setup for RGB LED
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);

 // ===
 // initialize digital pin 2 as an output.
 pinMode(ledStrobe, OUTPUT);

 // ===
 // Initialize peizo buzzer
 pinMode(buzzer,OUTPUT);

 // ===
 // Setup for Real Time Clock
 setupRTC();

 // ===
 // Check Date and Time
 setupDateTimeCheck();

 // ===
 // Setup for MicroSD card
 setupMicroSDCard();

 // ===
 // Setup for BME280 Sensor
 setupBmeSensor();

 // ===
 // Setup HX711 Load Cell
 setupHX711();

 // ===
 // Setup Fire Control System
 setupFireControl();

 // ===
 // Initialization All Sensors Passed
 initializationPass();
}

/**
 **
 * *
 * MAIN PROGRAM LOOP *
 * *
 **
 **/

void loop()
{
 // ===
 // Show date and time on both displays
 ledClock();

 // Clock updates display once every second to reduce flicker
 currentMillis = millis();

119 | P a g e

 if (currentMillis - lastExecutedMillis >= 1000)
 {
 lastExecutedMillis = currentMillis; // save the last executed time
 lcdDateAndTime();
 }

 // Check for button selection
 if (digitalRead(pinCalibrate) == LOW) loadCellCalibrate();
 if (digitalRead(pinStartButton) == LOW) motorPrepAndTest();

}

Buzzer_Tones.ino
/**
 **
 * *
 * Buzzer *
 * *
 **
 **/

void buzzerWarningTone1(void)
// ===
// A short series of tones
{
 int i;
 {
 for (i=0; i<50; i++)
 {
 digitalWrite(buzzer,HIGH);
 delay(50);
 digitalWrite(buzzer,LOW);
 delay(50);
 }
 }
}

void buzzerShortTone(void)
// ===
// A short tone
{
 // quick chirp
 digitalWrite(buzzer,HIGH);
 delay(50);
 digitalWrite(buzzer,LOW);

}

120 | P a g e

Calibrate_Load_Cell.ino
/**
 **
 * *
 * CALIBRATE LOAD CELL *
 * *
 **
 **/

void loadCellCalibrate()
{
 // ===
 // Constants for CAL for LED Clock
 const uint8_t SEG_CAL[] =
 {
 SEG_A | SEG_D | SEG_E | SEG_F, // C
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_D | SEG_E | SEG_F // L
 };

 // declarations for calibration
 float knownMass;
 float newCalibrationValue;

 boolean performTare;

 unsigned long timeStabilizing;

 // ===
 // Prerequisites for calibration

 // Preciscion right after power-up can be improved by adding a
 // few seconds of stabilizing time
 timeStabilizing = 2000;

 // Set this to false if you don't want tare to be performed
 // in the next step
 performTare = true;

 loadCell.start(timeStabilizing, performTare);

 // ===
 // Start calibration procedure

 // show calibration in progress on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" Calibration in "));
 lcd.setCursor(0,1);
 lcd.print(F(" Progress "));

 // start time for system log
 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // System Log for start of calibration
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Process"));
 sdResult = (F("Start"));
 writeSysDataToCard();

 // show "CAL" on clock
 clockDisplay.setSegments(blank);
 clockDisplay.setSegments(SEG_CAL);

121 | P a g e

 // Zero out (tare) the scale
 Serial.println(serialLine2);
 Serial.println(F("Start Calibration Process"));
 Serial.println();
 Serial.println(F("Place the Test Stand an a level stable surface."));
 Serial.println(F("Remove any load (weight) applied to the load cell."));
 Serial.println(F("Hit 't' followed by the 'ENTER' key from the Serial"));
 Serial.println(F("Monitor to set the tare offset."));
 Serial.println();

 resumeProcedure = false;
 while (resumeProcedure == false)
 {
 loadCell.update();
 if (Serial.available() > 0)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 if (charInput == 't' || charInput == 'T') loadCell.tareNoDelay();
 }
 }
 if (loadCell.getTareStatus() == true)
 {
 Serial.println(F("Tare complete"));
 Serial.println();

 //DateTime
 timeMillis = micros()/1000000.f;
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());

 // System Log for Load Cell
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Tare"));
 sdResult = (F("Complete"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }

 // ===
 // Calibrate load cell using an object of a known weight
 Serial.println(serialLine2);
 Serial.println(F("Next, place a calibration weight on the load cell."));
 Serial.println(F("Then enter the weight of this mass (i.e. 100.0) in "));
 Serial.println(F("grams using the serial monitor. Now hit the 'ENTER' key."));
 Serial.println();

 knownMass = 0.0;
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 loadCell.update();
 if (Serial.available() > 0)
 {
 knownMass = Serial.parseFloat();
 if (knownMass != 0)
 {
 Serial.print(F("Known mass is: "));
 Serial.print(knownMass);
 Serial.println(F(" grams"));
 Serial.println();

 //DateTime
 timeMillis = micros()/1000000.f;
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());

122 | P a g e

 // System Log for Load Cell
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Weight (grams)"));
 sdResult = (knownMass);
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }

 // ===
 // Calculate the new calibration value
 // refresh the dataset to be sure that the known mass is measured correct
 loadCell.refreshDataSet();

 // get the new calibration value
 newCalibrationValue = loadCell.getNewCalibration(knownMass);

 Serial.println(serialLine2);
 Serial.print(F("New calibration value has been set to: "));
 Serial.println(newCalibrationValue);

 //DateTime
 timeMillis = micros()/1000000.f;
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());

 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Value"));
 sdResult = (newCalibrationValue);
 writeSysDataToCard();

 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Calculation"));
 sdResult = (F("Complete"));
 writeSysDataToCard();

 // ===
 // Save new value to EEPROM
 Serial.print(F("Do you want to save the new calibration value to EEPROM adress "));
 Serial.print(eepromAdressCalibrationValue);
 Serial.println(F("? y/n"));
 Serial.println();

 resumeProcedure = false;
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 if (charInput == 'y' || charInput == 'Y')
 {
 EEPROM.put(eepromAdressCalibrationValue, newCalibrationValue);

 EEPROM.get(eepromAdressCalibrationValue, newCalibrationValue);
 Serial.print(F("Value "));
 Serial.print(newCalibrationValue);
 Serial.print(F(" has been saved at EEPROM address: "));
 Serial.println(eepromAdressCalibrationValue);
 Serial.println();

123 | P a g e

 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // System Log for Load Cell
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Stored to EEPROM"));
 sdResult = (F("Yes"));
 writeSysDataToCard();

 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration EEPROM Address"));
 sdResult = (eepromAdressCalibrationValue);
 writeSysDataToCard();

 resumeProcedure = true;
 }
 else if (charInput == 'n' || charInput == 'N')
 {
 Serial.println(F("New calibration value was not saved to the EEPROM"));

 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // System Log for Load Cell
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Load Cell Calibration Stored to EEPROM"));
 sdResult = (F("No"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }

 // ===
 // Calibration procedure complete
 Serial.println(F("Remove the calibration weight from the test stand"));
 Serial.println();
 Serial.println(serialLine);
 Serial.print(F("This concludes the calibration procedure at "));
 dateTimeSerialMonitor();
 sdTimeStamp = millis();
 Serial.println(serialLine);
 Serial.println();

 // show calibration completed on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" Calibration "));
 lcd.setCursor(0,1);
 lcd.print(F(" Completed "));

 // System Log for calibration success
 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 sdRTCStamp = bufferTime;
 sdMessage = ("Load Cell Calibration Process");
 sdResult = ("Complete");
 writeSysDataToCard();

 delay(2000);
}

124 | P a g e

Clock_LED.ino
/**
 **
 * *
 * LED CLOCK DISPLAY *
 * *
 **
 **/

void ledClock(void)
{
 // declare local variable
 int displayTime;

 // Get current date and time
 now = rtc.now();

 // Create time format to display
 displayTime = (now.hour() * 100) + now.minute();

 // Display the current time in 24 hour format
 // with leading zeros enabled and a center colon:
 clockDisplay.showNumberDecEx(displayTime, 0b11100000, true);
}

Fire_Abort_Recycle.ino
/**
 **
 * *
 * FIRE ABORT RECYCLE *
 * *
 **
 **/

void abortRecycle(void)
{
 // Show recycle message and instructions
 Serial.println();
 Serial.println(F("Recycle from Abort"));
 Serial.println();
 Serial.println(F("When conditions are favorable to reinitiate the test"));
 Serial.println(F("you can choose to recycle the aborted test. During a "));
 Serial.println(F("recycle the program will return to the Clear Test"));
 Serial.println(F("Stand section. The test can be restarted from that point"));
 Serial.println(F("using the test data that has already been entered"));
 Serial.println();
 Serial.println(F("When ready to recycle the test,"));
 Serial.println(F("hit 'r' followed by the 'ENTER' key."));
 Serial.println();

 // Get recycle input
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'r' || charInput == 'R')
 {

125 | P a g e

 Serial.println(F("Recycle of aborted test initiated at"));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println();
 Serial.println();

 // System Log for Test Area Cleared
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Recycle from Abort"));
 sdResult = (F("Initiated"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // Recycle to clear test stand function
 motorClearArea();

 // ==
 // Show header on Serial Monitor
 Serial.println(serialLine);
 Serial.println(F("Begin Motor Test Fire Process"));
 Serial.println(serialLine);
 Serial.println();

 // Fire Sequence
 fireSequence();
}

Fire_Abort_Sequence.ino
/**
 **
 * *
 * FIRE ABORT SEQUENCE *
 * *
 **
 **/

void abortTest(void)
{
 // ===
 // Abort Sequence
 // If the Fire button reports pin as HIGH
 // (button was released) assume abort

 // Print abort on serial monitor
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F(" * * * * * * A B O R T * * * * * *"));
 Serial.print(F(" Test aborted at "));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println(serialLine);

 // Print abort on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" * TEST * "));
 lcd.setCursor(0,1);
 lcd.print(F(" * ABORTED! * "));

 // show FAIL on LED

126 | P a g e

 clockDisplay.setSegments(SEG_FAIL);

 // sound buzzer
 buzzerWarningTone1();

 // System Log for Abort Fire
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Fire Control Sequence"));
 sdResult = (F("ABORT"));
 writeSysDataToCard();

 // Go to Recycle
 abortRecycle();
}

Fire_Control_Sequence.ino
/**
 **
 * *
 * FIRE CONTROL SEQUENCE *
 * *
 **
 **/

void fireSequence(void)
{
 // Constants for countdown for LED clock
 const uint8_t SEG_05[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_G, // -
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G // 5
 };

 const uint8_t SEG_04[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_G, // -
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_B | SEG_C | SEG_F | SEG_G // 4
 };

 const uint8_t SEG_03[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_G, // -
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_G // 3
 };

 const uint8_t SEG_02[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_G, // -
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_A | SEG_B | SEG_D | SEG_E | SEG_G // 2
 };

 const uint8_t SEG_01[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_G, // -

127 | P a g e

 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_B | SEG_C // 1
 };

 // Constants for FIRE
 const uint8_t SEG_FIRE[] =
 {
 SEG_A | SEG_E | SEG_F | SEG_G, // F
 SEG_E | SEG_F, // I
 SEG_E | SEG_G, // R
 SEG_A | SEG_D | SEG_E | SEG_F | SEG_G // E
 };

 // ===
 // Ready for Test Firing
 // time
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // System Log for Fire Sequence
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Fire Control Sequence"));
 sdResult = (F("Ready"));
 writeSysDataToCard();

 // Standby firing sequence on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F("STANDING BY FOR "));
 lcd.setCursor(0,1);
 lcd.print(F(" FIRE SEQUENCE "));

 // column headers
 Serial.println(F("Column Header Explanation"));
 Serial.println();
 Serial.println(F("During the test, three columns will be displayed"));
 Serial.println(F("The data displayed is as follows:"));
 Serial.println(F("\t Column One - Elasped Time (in milliseconds)"));
 Serial.println(F("\t Column Two - Thrust (measured in Newtons)"));
 Serial.println(F("\t Column Three - Total Impulse (measured in Newtons)"));
 Serial.println();

 // Display delay time entry instructions on Serial Monitor
 Serial.println(serialLine);
 Serial.println(F("==
=="));
 Serial.println(F("== Ready to Test Fire
=="));
 Serial.println(F("== The system is now ready for a test firing.
=="));
 Serial.println(F("==
=="));
 Serial.println(F("== Press and hold the red 'Fire' button to proceed through the five
=="));
 Serial.println(F("== second countdown. Release the red 'Fire' button to ABORT the test.
=="));
 Serial.println(F("==
=="));
 Serial.println(serialLine);
 Serial.println();

 // Fire button sequence
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (digitalRead(pinFireButton) == LOW)
 resumeProcedure = true;
 }

128 | P a g e

 // show Fire button pressed on screen
 Serial.println(serialLine);
 Serial.print(F("Ignition Sequence Started at "));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println(serialLine);

 // System Log for Fire Sequence
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Fire Control Sequence"));
 sdResult = (F("Countdown Initiated"));
 writeSysDataToCard();

 // Display launch sequence on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F("Fire Sequence "));
 lcd.setCursor(0,1);
 lcd.print(F("Initiated "));

 // Start loop LED countdown clock from t-5
 for (int countdown = 5; countdown > 0; countdown --)
 {
 if (countdown == 5)
 {
 clockDisplay.setSegments(SEG_05);
 buzzerShortTone();
 delay(1000);
 }
 else if (countdown == 4)
 {
 clockDisplay.setSegments(SEG_04);
 buzzerShortTone();
 delay(1000);
 }
 else if (countdown == 3)
 {
 clockDisplay.setSegments(SEG_03);
 buzzerShortTone();
 delay(1000);
 }
 else if (countdown == 2)
 {
 clockDisplay.setSegments(SEG_02);
 buzzerShortTone();
 delay(1000);
 }
 else if (countdown == 1)
 {
 clockDisplay.setSegments(SEG_01);
 buzzerShortTone();
 delay(1000);
 }

 // Check for ABORT
 // Fire button must remain depressed during countdown otherwise an ABORT is called
 if (digitalRead(pinFireButton) == HIGH)
 {
 // jump to Fire Abort Sequence
 abortTest();

 // return to loop()
 return;
 }
 }

 // ===
 // Start test stand power sequence

 // Weather data
 fireWeather();

129 | P a g e

 // show FIRE on LED
 clockDisplay.setSegments(SEG_FIRE);

 // Display power flowing to stand on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F("Power Flowing to"));
 lcd.setCursor(0,1);
 lcd.print(F(" Test Stand "));

 // show power is flowing to test stand on Serial Monitor
 Serial.println();
 Serial.print(F("Power flowing to the Test Stand at "));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println(serialLine2);

 // System Log for Fire Sequence
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Fire Control Sequence"));
 sdResult = (F("Ignition"));
 writeSysDataToCard();

 // start buzzer
 digitalWrite(buzzer,HIGH);

 // open relay to send power to igniter
 digitalWrite(pinFireRelay, HIGH);

 // Data collection routine
 fireDataCollection();

 // ===
 // Show Post Test Header on Serial Monitor
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F("Begin Motor Post Test Fire and Data Entry Process"));
 Serial.println(serialLine);

 // Post fire shutdown safety period
 fireShutdown();

 // Post fire shutdown data entry
 postTestDataEntry();
}

Fire_Data_Collection.ino

/**
 **
 * *
 * FIRE DATA COLLECTION SEQUENCE *
 * *
 **
 **/

void fireDataCollection(void)
{
 // ===
 // Write the following in this section
 // - time stamp in milliseconds
 // - data from load cell
 // - call to write data to SD card

 /*

130 | P a g e

 This routine collects data from the load cell and converts it into Newtons
 It uses that data to determine impulse for each sensor reading and to
 calculate overall inpulse

 timeMillis; Current time in microseconds, divided by 1,000,000 to
 convert to milliseconds
 scaleNewtons; scale.get_units()*0.009806f; [scale units(in grams)
 multiplied by 0.009806 to convert to Newtons. Is used
 to convert grams to newtons where 1 gram = 0.0098067 newtons]
 timeElapsed; Elapsed time [In setup is 1 divided by 80 as the scale gets
 80 samples per second - 80Hz]
 timeMillis-timeLast; [In main loop,it is the elapsed time,
 calculated by subtracting the current time from the last time
 (at end of loop)
 impulseSingle; scaleNewtons*timeElapsed; [Provides impulse for a single
 sensor reading]
 impulseTotal; impulse + impulseSingle; [Adds previous impulse to current
 impulse to provide total impulse at each sensor reading]
 timeLast; timeLast = timeMillis; [Gets time at end of loop in microseconds}
 timeData; timeMillis + 10.f; [In setup, takes the current time and adds 10
 seconds to it]
 */

 // ===
 // Get data during burn
 resumeProcedure = false;
 skip = false;

 timeNow = millis();
 timeData = timeDataCollection + timeNow;
 timeRelay = (timeFireRelay * 1000) + timeNow;

 // loop to get data from load cell
 while(resumeProcedure == false)
 {
 // check for new data/start next conversion:
 if (loadCell.update()) newDataReady = true;
 {
 // collect data
 if (newDataReady)
 {
 // get motor thrust data
 timeMillis = micros()/1000000.f;
 scaleNewtons = loadCell.getData() * 0.009806f;
 timeElapsed = timeMillis - timeLast;
 impulseSingle = scaleNewtons * timeElapsed;
 impulseTotal = impulseTotal + impulseSingle;
 timeLast = timeMillis;
 newDataReady = 0;

 // print results to serial monitor
 Serial.print(timeMillis,10);
 Serial.print("\t");
 Serial.print(scaleNewtons,10);
 Serial.print("\t");
 Serial.print(impulseTotal,10);
 Serial.println("\t");

 // write motor data to micro sd card
 writeMotorDataToSDCard();
 }
 }

 // relay shutoff after selected amount of time
 if (skip == false)
 {
 if (millis() > (timeRelay))
 {
 // Turn off power to pad
 // reset relay to off
 digitalWrite(pinFireRelay, LOW);

131 | P a g e

 // stop buzzer
 digitalWrite(buzzer,LOW);

 Serial.println();
 Serial.println(F("Power has stopped flowing to the Test Stand"));
 dateTimeSerialMonitor();
 Serial.println();

 // write to system log
 timeMillis = micros()/1000000.f;
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Power to Igniter"));
 sdResult = (F("Off"));
 writeSysDataToCard();

 skip = true;
 }
 }

 // check to see if data collection time has been exceeded
 if (millis() > (timeData))
 {
 Serial.println();
 Serial.println(F("Test Data Collection Concluded"));
 dateTimeSerialMonitor();
 Serial.println();

 resumeProcedure = true;
 }
 }
}

Fire_Shutdown_Period.ino
/**
 **
 * *
 * POST FIRE SHUTDOWN SAFETY PERIOD *
 * *
 **
 **/

void fireShutdown(void)
{
 // ===
 // Constants for LED clock

 // Constants for STAY
 const uint8_t SEG_STAY[] =
 {
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G, // S
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_B | SEG_C | SEG_D | SEG_F | SEG_G // Y
 };

 // Constants for BACK
 const uint8_t SEG_BACK[] =
 {
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G, // B
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_A | SEG_D | SEG_E | SEG_F, // C
 SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // K
 };

 // Constants for SAFE

132 | P a g e

 const uint8_t SEG_SAFE[] =
 {
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G, // S
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_A | SEG_E | SEG_F | SEG_G, // F
 SEG_A | SEG_D | SEG_E | SEG_F | SEG_G // E
 };

 // ===
 // Backup to turn off power to pad in case it was not done earlier
 // reset relay to off
 digitalWrite(pinFireRelay, LOW);

 // stop buzzer
 digitalWrite(buzzer,LOW);

 // ===
 // Start 60-second wait period before approaching pad

 // Yellow lamps on test stand
 rgbYellow();
 rgbSteadyLamp();

 // show power has stopped flowing on screen if not done earlier
 if (skip == false)
 {
 Serial.println();
 Serial.println(F("Power has stopped flowing to the Test Stand"));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;

 // System Log for Post Fire Shutdown
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Post Ignition Shutdown"));
 sdResult = (F("Power Off"));
 writeSysDataToCard();
 }

 // One minute "Stay Away" post firing safety period
 Serial.println();
 Serial.println(F("Begin 1-minute post test safety period."));
 Serial.println(F("Stay Clear of the Test Stand till 'All Clear' is given"));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;

 // System Log for Post Fire Shutdown
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Post Test Safety Period"));
 sdResult = (F("Start"));
 writeSysDataToCard();

 // Start loop for pad safety countdown
 for (int safety = 60; safety > 0; safety -=10)
 {
 clockDisplay.setSegments(SEG_STAY);
 lcd.setCursor(0,0);
 lcd.print(F("Keep Stand Clear"));
 lcd.setCursor(0,1);
 lcd.print(F(" for "));
 lcd.print(safety);
 lcd.print(F("-seconds "));

 // show data while looping for 5 seconds
 for (x = 1; x <= 5 ;x++)
 {
 delay (1000);
 }

 clockDisplay.setSegments(SEG_BACK);

133 | P a g e

 lcd.setCursor(0,1);
 lcd.print(F(" for "));
 lcd.print(safety-5);
 lcd.print(F("-seconds "));

 // show data while looping for 5 seconds
 for (x = 1; x <= 5 ;x++)
 {
 delay (1000);
 }

 }

 // show green lamp on test stand
 rgbGreen();
 rgbSteadyLamp();

 // turn off strobes
 MsTimer2::stop();

 // return to normal operations
 Serial.println();
 Serial.println(F("All Clear Announced"));
 dateTimeSerialMonitor();
 Serial.println();

 timeMillis = micros()/1000000.f;

 // System Log for Post Fire Shutdown
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Post Test Safety Period"));
 sdResult = (F("Finished"));
 writeSysDataToCard();

 // Display "SAFE" LED countdown clock
 clockDisplay.setSegments(SEG_SAFE);

 // Indicate safe on LCD
 lcd.setCursor(0,0);
 lcd.print(F("It is safe to "));
 lcd.setCursor(0,1);
 lcd.print(F("approach stand "));

 // quick chirp
 buzzerShortTone();
}

Fire_Weather.ino
/**
 **
 * *
 * FIRE WEATHER DATA COLLECTION *
 * *
 **
 **/

void fireWeather(void)
{
 // ===
 // get weather data
 sensorEnviroValues();

 // time of sensor readings
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());

134 | P a g e

 timeMillis = micros()/1000000.f;

 // System Log for BME 280 Sensor Readings - Temperature
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Air Temperature"));
 sdResult = (sdTemperature + "* C");
 writeSysDataToCard();

 // System Log for BME 280 Sensor Readings - Barometric Pressure
 sdMessage = (F("Barometric Pressure"));
 sdResult = (sdPressure + " hPa");
 writeSysDataToCard();

 // System Log for BME 280 Sensor Readings - Humidity
 sdMessage = (F("Humidity"));
 sdResult = (sdHumidity + "%");
 writeSysDataToCard();
}

Initialization_Pass.ino
/**
 **
 * *
 * INITIALIZATION PASS SEQUENCE *
 * *
 **
 **/

void initializationPass(void)
{
 // Constants for PASS for LED clock
 const uint8_t SEG_PASS[] =
 {
 SEG_A | SEG_B | SEG_E | SEG_F | SEG_G, // P
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G, // S
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G // S
 };

 // ===
 // show PASS on LED
 clockDisplay.setSegments(SEG_PASS);
 // ===
 // Show all sensors initialized on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F(" All Systems "));
 lcd.setCursor(0,1);
 lcd.print(F(" Initialized "));

 // card initialized properly and is ready to start writing data
 Serial.println(serialLine);
 Serial.print(F("All sensors and systems initialized at "));

 // print date and time of completion
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println(serialLine);

 // System Log for Initialization Complete
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initialization of All Sensors and Systems"));
 sdResult = (F("Successful"));
 writeSysDataToCard();

135 | P a g e

 // show green LED lamp
 rgbGreen();
 rgbSteadyLamp();

 // sound buzzer
 buzzerShortTone();

 // delay for 3 seconds
 delay(3000);

 // print instructions to start testing
 Serial.println();
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F("==
=="));
 Serial.println(F("== Press Green Button to Start Test Procedures
=="));
 Serial.println(F("==
=="));
 Serial.println(serialLine);
 Serial.println();
}

LCD_Date_Time.ino
/**
 **
 * *
 * DATE AND TIME DISPLAYED ON LCD *
 * *
 **
 **/

void lcdDateAndTime(void)
{
 // Get Date & Time Data
 //DateTime
 now = rtc.now();

 // Display Date
 lcd.setCursor(0,0);
 lcd.print(F("Date: "));
 lcd.setCursor(6,0);

lcd.print(now.month());lcd.print(F("/"));lcd.print(now.day());lcd.print(F("/"));lcd.print(now.yea
r());

 // Display Time
 lcd.setCursor(0,1);
 lcd.print(F("Time: "));
 lcd.setCursor(6,1);

 //add leading zeros if needed
 sprintf(bufferDate, "%02u:%02u:%02u ", now.hour(), now.minute(), now.second());
 lcd.print(bufferDate);

}

136 | P a g e

Motor_Load_Sequence.ino
/**
 **
 * *
 * MOTOR LOAD SEQUENCE *
 * *
 **
 **/

void motorLoad(void)
{
 // Constants for LOAD for LED clock
 const uint8_t SEG_LOAD[] =
 {
 SEG_D | SEG_E | SEG_F, // L
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // A
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F // D
 };

 // ===
 // motor loading sequence

 // Turn test stand LEDs to Yellow
 rgbYellow();
 rgbSteadyLamp();

 // Turn on white strobe lamps
 MsTimer2::set(500, ledWhiteStrobeLamp); // 500ms period
 MsTimer2::start();

 // show "LOAD" on clock
 clockDisplay.setSegments(SEG_LOAD);

 // show loading sequence in progress on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" Motor Loading "));
 lcd.setCursor(0,1);
 lcd.print(F(" In Progress "));

 // ===
 // Motor loading checklist

 // Display Total Impulse entry instructions on Serial Monitor
 Serial.println();
 Serial.println(F("Motor Loading Checklist"));
 Serial.println();
 Serial.println(F("Make sure the following tasks have been completed:"));
 Serial.println(F(" - Motor has igniter installed."));
 Serial.println(F(" - Motor is installed in appropriate motor mount."));
 Serial.println(F(" - The motor retaining ring is secured in place."));
 Serial.println();
 Serial.println(F("When these tasks have been completed and verified,"));
 Serial.println(F("hit 'v' followed by the 'ENTER' key."));
 Serial.println();

 // Get total impulse of the motor being tested
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'v' || charInput == 'V')
 {
 Serial.println(F("Motor load complete and verified"));
 dateTimeSerialMonitor();

137 | P a g e

 timeMillis = micros()/1000000.f;
 Serial.println();

 // System Log for Motor Loading
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Motor Loading Checklist"));
 sdResult = (F("Verified"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }
}

Motor_Mount_Sequence.ino
/**
 **
 * *
 * MOTOR MOUNT SEQUENCE *
 * *
 **
 **/

void motorMount(void)
{
 // ===
 // Motor mount checklist

 // Display motor mount instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Mount Checklist"));
 Serial.println();
 Serial.println(F("Make sure the following tasks have been completed:"));
 Serial.println(F(" - Test stand threaded adapter is clean and free of debris."));
 Serial.println(F(" - Motor mount is installed in test stand threaded adapter."));
 Serial.println(F(" - Motor mount is secured in test stand threaded adapter."));
 Serial.println(F(" - Micro clips are attached to igniter and are not touching."));
 Serial.println();
 Serial.println(F("When these tasks have been completed and verified,"));
 Serial.println(F("hit 'v' followed by the 'ENTER' key."));
 Serial.println();

 // Get verification of the motor mount checklist
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'v' || charInput == 'V')
 {
 Serial.println(F("Motor mounting procedure complete and verified"));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println();

 // System Log for Motor Mount
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Motor Mount Checklist"));

138 | P a g e

 sdResult = (F("Verified"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }
}

Motor_Prep_And_Test.ino
/**
 **
 * *
 * MOTOR PREPARATION AND TEST SEQUENCE *
 * *
 **
 **/

void motorPrepAndTest(void)
{
 // if Start button is HIGH assume rogue button push
 if (digitalRead(pinStartButton) == HIGH)
 {
 return;
 }

 // ===
 // Test Preparation

 // Show header on Serial Monitor
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F("Begin Test Preparation and Data Entry Process"));
 Serial.println(serialLine);

 // get prep information
 motorPrepInfo();

 // get casing information
 motorCasingInfo();

 // get Total Impulse letter rating
 motorPrepTotalImpulse();

 // get Average Thrust rating
 motorPrepAvgThrust();

 // get Delay Time rating
 motorPrepDelayTime();

 // get propellant information
 motorPrepPropellant();

 // get time for relay to fire
 motorPrepIgnitionTime();

 // calculate total data collection time
 motorPrepCalcDataTime();

 // ===
 // Show header on Serial Monitor
 Serial.println();
 Serial.println(serialLine);
 Serial.println(F("Begin Motor Loading and Pre-Fire Process"));

139 | P a g e

 Serial.println(serialLine);

 // Load rocket motor into mount
 motorLoad();

 // Insert mount into test stand threaded adapter
 motorMount();

 // Calibrate stand if not done earlier
 motorRecalibrate();

 // Clear the Area
 motorClearArea();

 // Prep scale for test
 motorScalePreparation();

 // ===
 // Show header on Serial Monitor
 Serial.println(serialLine);
 Serial.println(F("Begin Motor Test Fire Process"));
 Serial.println(serialLine);
 Serial.println();

 // Fire Sequence
 fireSequence();
}

Motor_Prep_Avg_Thrust.ino
/**
 **
 * *
 * MOTOR PREP AVERAGE THRUST SEQUENCE *
 * *
 **
 **/

void motorPrepAvgThrust(void)
{
 // ==
 // Get motor average thrust information

 // Display Average Thrust entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Average Thrust"));
 Serial.println();
 Serial.println(F("Enter the number for the average thrust of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get average thrust of the motor being tested
 motorAverageThrust = 0;
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 motorAverageThrust = Serial.parseInt();
 if (motorAverageThrust != 0)
 {
 // Display average thrust entered
 Serial.print(F("Average thrust entered: "));
 Serial.println(motorAverageThrust);
 Serial.println();

140 | P a g e

 sdThrustAvg = motorAverageThrust;
 resumeProcedure = true;
 }
 }
 }
}

Motor_Prep_Calc_Time.ino
/**
 **
 * *
 * MOTOR PREP CALCULATE DATA COLLECTION TIME SEQUENCE *
 * *
 **
 **/

void motorPrepCalcDataTime(void)
{
/***
 * Determine length of time that data should be collected. This is
 * calculated by dividing the Total Impulse by the Avergae Thrust.
 * The Delay Time is added and then the Firing Time is added. One
 * additional second is added to the total. The total is multipled
 * by 1000 to to derive a total time in milliseconds
 ***/
 float timeBurn;
 float timeMotor;

 timeBurn = (motorTotalImpulse/motorAverageThrust);
 timeMotor = (motorDelayTime + timeFireRelay);

 timeDataCollection = (((timeBurn + timeMotor) * 1000) + 1000);

 Serial.print(serialLine2);
 Serial.println(serialLine2);
 Serial.print(F("Total data collection time: "));
 Serial.print(timeDataCollection);
 Serial.println(F(" milliseconds"));
 Serial.print(serialLine2);
 Serial.println(serialLine2);
}

Motor_Prep_Casing.ino
/**
 **
 * *
 * MOTOR CASING INFORMATION *
 * *
 **
 **/

void motorCasingInfo(void)
{
// clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

141 | P a g e

 // ===
 // Get motor casing dimensions - length
 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Case Length"));
 Serial.println();
 Serial.println(F("Enter the length of the case (in millimeters)"));
 Serial.println(F("of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get casing length
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 sdInfo = ("Case Length: ") + sdInfo + (" mm");
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for casing length
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ===
 // Get casing dimensions - diameter
 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Case Diameter"));
 Serial.println();
 Serial.println(F("Enter the exterior diameter of the case (in millimeters)"));
 Serial.println(F("of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get casing diameter
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Case Diameter: "));
 Serial.print(sdInfo);
 Serial.println(F(" mm"));
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Case Diameter: ") + sdInfo + (" mm");
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }

142 | P a g e

 }

 // ==
 // Get casing condition

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Case Condition"));
 Serial.println();
 Serial.println(F("Describe the overall condition of the case of the motor being tested."));
 Serial.println(F("Include any apparent damage or swelling that is noted."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get casing condition
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Case Condition: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for Case Condition
 sdInfo = ("Case Condition: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ===
 // Get casing mass

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Case Mass"));
 Serial.println();
 Serial.println(F("Enter the total mass of the motor (in grams) that is being tested."));
 Serial.println(F("(Only enter the mass of the motor. Do not include the igniter or any other
additional items.)"));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get casing mass
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Case Mass: "));
 Serial.print(sdInfo);
 Serial.println(F(" grams"));
 Serial.println();

 // Info Log for Case Condition
 sdInfo = ("Case Mass: ") + sdInfo + (" grams");
 writeInfoDataToCard();

143 | P a g e

 resumeProcedure = true;
 }
 }
 }
 }
}

Motor_Prep_Delay_Time.ino
/**
 **
 * *
 * MOTOR PREP DELAY TIME SEQUENCE *
 * *
 **
 **/

void motorPrepDelayTime(void)
{
 // ===
 // Get motor delay time information

 // Display delay time entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Delay Time"));
 Serial.println();
 Serial.println(F("Enter the delay time of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get delay time of the motor being tested
 motorDelayTime = 0;
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 motorDelayTime = Serial.parseInt();
 if (motorDelayTime != 0)
 {
 // Display delay time entered
 Serial.print(F("Delay time entered: "));
 Serial.println(motorDelayTime);
 Serial.println();

 sdDelay = motorDelayTime;
 resumeProcedure = true;
 }
 }
 }

 // Now that we have the full motor code we can write it to the Information text file
 sdInfo = sdImpulseTotal + sdThrustAvg + "-" + sdDelay;

 // Info Log for Test Area Cleared
 sdInfo = ("Motor Classification: ") + sdInfo;
 writeInfoDataToCard();

}

144 | P a g e

Motor_Prep_Ignition_Time.ino
/**
 **
 * *
 * MOTOR PREP IGNITION TIME SEQUENCE *
 * *
 **
 **/

void motorPrepIgnitionTime(void)
{
 // ===
 // Get motor ignition time information

 // Display delay time entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Test Stand Entry: Ignition Time"));
 Serial.println();
 Serial.println(F("Enter the length of time (in seconds) between 3 and 10 that power"));
 Serial.println(F("should be applied to the igniter of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get length of time for igniter of the motor being tested
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 timeFireRelay = Serial.parseInt();
 if (timeFireRelay != 0)
 {
 if ((timeFireRelay < 3) || (timeFireRelay >10))
 timeFireRelay = 5;

 // Display average thrust entered
 Serial.print(F("Ignition time length entered: "));
 Serial.println(timeFireRelay);
 Serial.println();

 resumeProcedure = true;
 }
 }
 }
}

Motor_Prep_Info.ino
/**
 **
 * *
 * MOTOR PREPARATION INFORMATION *
 * *
 **
 **/

void motorPrepInfo(void)
{
 // Constants for PREP for LED clock
 const uint8_t SEG_PREP[] =
 {
 SEG_A | SEG_B | SEG_E | SEG_F | SEG_G, // P
 SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G, // R

145 | P a g e

 SEG_A | SEG_D | SEG_E | SEG_F | SEG_G, // E
 SEG_A | SEG_B | SEG_E | SEG_F | SEG_G // P
 };

 // ===
 // motor test preparation information

 // show "PREP" on clock
 clockDisplay.setSegments(SEG_PREP);

 // show test preparation in progress on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Motor Preparatin"));
 lcd.setCursor(0,1);
 lcd.print(F(" In Progress "));

 // clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

 // ===
 // Get location information

 // Display instructions on Serial Monitor
 Serial.println();
 Serial.println(F("Motor Data Entry: Location Information"));
 Serial.println();
 Serial.println(F("Enter the location where the test is being conducted."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get location for the motor test
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Location entered: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Test Location: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 sdInfo="";
 }
 }
 }
 }

 // ===
 // Get location elevation
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Location Elevation"));
 Serial.println();
 Serial.println(F("Enter the elevation (in meters) above mean sea level"));
 Serial.println(F("where the test is being conducted."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get elevation for the motor being tested
 resumeProcedure = false;

146 | P a g e

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Elevation entered: "));
 Serial.print(sdInfo);
 Serial.println(F(" meters"));
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Test Location Elevation: ") + sdInfo + (" meters");
 writeInfoDataToCard();

 resumeProcedure = true;
 sdInfo="";
 }
 }
 }
 }

// ===
 // Get manufacturer name

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Manufacturer Name"));
 Serial.println();
 Serial.println(F("Enter the name of the manufacturer of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get manufacturer name for the motor being tested
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Manufacturer name entered: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Manufacturer Name: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 sdInfo="";
 }
 }
 }
 }
}

147 | P a g e

Motor_Prep_Propellant.ino
/**
 **
 * *
 * MOTOR PREPARATION PROPELLANT *
 * *
 **
 **/

void motorPrepPropellant(void)
{
 // clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

 // ===
 // Get propellant type

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Propellant Type"));
 Serial.println();
 Serial.println(F("Enter the type of propellant being used by the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get propellant mass
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Propellant type entered: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Propellant Type: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ==
 // Get propellant mass

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Propellant Mass"));
 Serial.println();
 Serial.println(F("Enter the mass of propellant being used by the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get propellant mass
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {

148 | P a g e

 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Propellant mass entered: "));
 Serial.print(sdInfo);
 Serial.println(F(" grams"));
 Serial.println();

 // Info Log for propellant mass
 sdInfo = ("Propellant Mass: ") + sdInfo + (" grams");
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ==
 // Get motor date/lot code

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Motor Date or Lot Code"));
 Serial.println();
 Serial.println(F("Enter either the Date of Manufacture or the Lot Number"));
 Serial.println(F("of the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get lot code
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Date/Lot Code: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for lot code
 sdInfo = ("Date/Lot Code: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ==
 // Get motor igniter

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Igniter"));
 Serial.println();
 Serial.println(F("Enter the type of igniter being used on the motor being tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get igniter info
 resumeProcedure = false;

149 | P a g e

 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Igniter: "));
 Serial.println(sdInfo);
 Serial.println();

 // Info Log for igniter type
 sdInfo = ("Igniter: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }

Motor_Prep_Scale.ino

/**
 **
 * *
 * Motor Scale Preparation Sequence *
 * *
 **
 **/

void motorScalePreparation(void)
{
 // ===
 // Final preparations for data collection

 // Show column headers
 resumeProcedure = false;

 // Clear Serial Buffer
 while(Serial.available() > 0)
 {
 byte dummyread = Serial.read();
 }

 // Get calibration data from EEPROM
 loadCell.start(serialDigitalOut, powerDownSerialClock);
 EEPROM.get(eepromAdressCalibrationValue, newCalibrationValue);
 loadCell.setCalFactor(newCalibrationValue);
}

Motor_Prep_Total_Impulse.ino
/**
 **
 * *
 * MOTOR PREP TOTAL IMPULSE SEQUENCE *
 * *
 **
 **/

150 | P a g e

void motorPrepTotalImpulse(void)
{
 // ===
 // Get motor total impulse information

 // Display Total Impulse entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Motor Data Entry: Total Impulse"));
 Serial.println();
 Serial.println(F("Enter the letter for the total impulse of the motor being tested."));
 Serial.println(F(" - For 1/4A motors, enter '4'."));
 Serial.println(F(" - For 1/2A motors, enter '2'."));
 Serial.println(F(" - For all other motors (A-G), enter the letter designation."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get total impulse of the motor being tested
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == '4')
 {
 motorTotalImpulse = 0.625;
 sdImpulseTotal = "1/4A";
 }
 else if (charInput == '2')
 {
 motorTotalImpulse = 1.25;
 sdImpulseTotal = "1/2A";
 }
 else if (charInput == 'a' || charInput == 'A')
 {
 motorTotalImpulse = 2.5;
 sdImpulseTotal = "A";
 }
 else if (charInput == 'b' || charInput == 'B')
 {
 motorTotalImpulse = 5;
 sdImpulseTotal = "B";
 }
 else if (charInput == 'c' || charInput == 'C')
 {
 motorTotalImpulse = 10;
 sdImpulseTotal = "C";
 }
 else if (charInput == 'd' || charInput == 'D')
 {
 motorTotalImpulse = 20;
 sdImpulseTotal = "D";
 }
 else if (charInput == 'e' || charInput == 'E')
 {
 motorTotalImpulse = 40;
 sdImpulseTotal = "E";
 }
 else if (charInput == 'f' || charInput == 'F')
 {
 motorTotalImpulse = 80;
 sdImpulseTotal = "F";
 }
 else if (charInput == 'g' || charInput == 'G')
 {
 motorTotalImpulse = 160;
 sdImpulseTotal = "G";
 }

151 | P a g e

 }

 // Display total impulse entered
 Serial.print(F("Total Impulse entered: "));
 Serial.print(sdImpulseTotal);
 Serial.print(" - ");
 Serial.print(motorTotalImpulse, 3);
 Serial.println(F(" Newtons"));
 Serial.println();

 resumeProcedure = true;
 }
 }
}

Motor_Recalibration_Sequence.ino
**
 **
 * *
 * MOTOR RECALIBRATION SEQUENCE *
 * *
 **
 **/

void motorRecalibrate(void)
{
 // ===
 // Calibrate decision

 // Display Test Stand calibration entry instructions on Serial Monitor
 Serial.println(serialLine);
 Serial.println(F("Test Stand Calibration"));
 Serial.println();
 Serial.println(F("The test stand should be calibrated prior to testing."));
 Serial.println(F("If you have previously calibrated the test stand you"));
 Serial.println(F("can use that calibration if you have saved it."));
 Serial.println();
 Serial.println(F("If you did not save a previous calibration, if a "));
 Serial.println(F("calibration has never been performed, or if you wish"));
 Serial.println(F("to perform a new calibration, hit 'c' followed by the"));
 Serial.println(F("'ENTER' key."));
 Serial.println();
 Serial.println(F("If you wish to bypass the calibration process hit 'b'"));
 Serial.println(F("followed by the 'ENTER' key."));
 Serial.println();

 // Get calibration decision
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'b' || charInput == 'B')
 {
 Serial.println(F("Calibration Bypassed"));
 dateTimeSerialMonitor();
 Serial.println();

 // System Log for Calibration Bypass
 timeMillis = micros()/1000000.f;
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;

152 | P a g e

 sdMessage = (F("Recalibrate Load Cell"));
 sdResult = (F("Bypassed"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 else if (charInput == 'c' || charInput == 'C')
 {

 // System Log for Recalibraion
 timeMillis = micros()/1000000.f;
 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Recalibrate Load Cell"));
 sdResult = (F("Yes"));
 writeSysDataToCard();

 // Go to calibraion function
 loadCellCalibrate();

 resumeProcedure = true;
 }
 }
 }
 }
}

Motor_Test_Clear_Area.ino
/**
 **
 * *
 * MOTOR TEST CLEAR AREA *
 * *
 **
 **/

void motorClearArea(void)
{
 // Constants for TEST for LED clock
 const uint8_t SEG_TEST[] =
 {
 SEG_D | SEG_E | SEG_F | SEG_G, // t
 SEG_A | SEG_D | SEG_E | SEG_F | SEG_G, // E
 SEG_A | SEG_C | SEG_D | SEG_F | SEG_G, // S
 SEG_D | SEG_E | SEG_F | SEG_G // t
 };

 // ===
 // Clear Test Area Sequence

 // Turn test stand LEDs to Red
 rgbRed();
 rgbSteadyLamp();

 // show "TEST" on clock
 clockDisplay.setSegments(SEG_TEST);

 // Display Clear Area on LCD display
 lcd.setCursor(0,0);
 lcd.print(F("CLEAR TEST STAND"));
 lcd.setCursor(0,1);
 lcd.print(F(" AREA "));

 // Display clear area instructions on Serial Monitor
 Serial.println(serialLine2);

153 | P a g e

 Serial.println(F("Clear Test Stand Checklist"));
 Serial.println();
 Serial.println(F(" - Make sure that everyone is a safe distance"));
 Serial.println(F(" from the Test Stand."));
 Serial.println(F(" - Nothing should be on the Test Stand."));
 Serial.println(F(" - Nothing should be under the load cell."));
 Serial.println(F(" - The ejection charge vent ports must be clear."));
 Serial.println();
 Serial.println(F("When these tasks have been completed and verified,"));
 Serial.println(F("hit 'v' followed by the 'ENTER' key."));
 Serial.println();

 // Get verificaton test area is clear
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'v' || charInput == 'V')
 {
 Serial.println(F("Clear Test Stand and Area checklist complete and verified"));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;
 Serial.println();
 Serial.println();

 // System Log for Test Area Cleared
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Test Stand Area Cleared"));
 sdResult = (F("Verified"));
 writeSysDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }
}

Motor_Test_Tare.ino
/**
 **
 * *
 * MOTOR TEST TARE *
 * *
 **
 **/

void motorTare(void)
{
 // ===
 // Perform tare on test stand
 loadCell.update();
 loadCell.tareNoDelay();

 if (loadCell.getTareStatus() == true)
 {
 Serial.println(F("Tare complete"));
 Serial.println();

 resumeProcedure = true;

154 | P a g e

 }
}

Post_Test_Data_Entry.ino
/**
 **
 * *
 * POST FIRE SHUTDOWN SAFETY PERIOD *
 * *
 **
 **/

void postTestDataEntry(void)
{
// clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

 // ===
 // Determine if CATO

 // Display CATO entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Post Test Data Entry: CATO"));
 Serial.println();
 Serial.println(F("Did the motor suffer a catostrophic failure?"));
 Serial.println(F("If YES hit 'y' followed by the 'ENTER' key."));
 Serial.println(F("If NO hit 'n' followed by the 'ENTER' key."));
 Serial.println();

 // Get CATO info
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'n' || charInput == 'N')
 {
 // Info Log for CATO Reporting
 sdInfo = ("No catostrophic failure reported");
 writeInfoDataToCard();

 Serial.println(F("No catostrophic failure reported"));
 Serial.println();

 resumeProcedure = true;
 }
 else
 {
 // System Log for Motor Loading
 sdInfo = ("Catostrophic failure of the motor occured during this test");
 writeInfoDataToCard();

 Serial.println(F("Catostrophic failure of the motor occured during this test"));
 Serial.println(F("Prepare a MESS Report through https://www.motorcato.org"));
 Serial.println();

 resumeProcedure = true;
 }
 }

155 | P a g e

 }
 }

 // clear serial buffer
 while(Serial.available())
 {
 char getData = Serial.read();
 }

 // ===
 // Get empty casing mass info post test

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Post Test Data Entry: Case Mass"));
 Serial.println();
 Serial.println(F("Enter the post test mass of the case of the motor that was tested."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get empty mass
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Post test case mass: "));
 Serial.println(sdInfo);
 Serial.println();
 //Serial.println();

 // Info Log for Test Area Cleared
 sdInfo = ("Post test case mass: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ===
 // Get casing condition

 // Display instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Post Test Data Entry: Comments"));
 Serial.println();
 Serial.println(F("Enter any comments about the test that were not covered"));
 Serial.println(F("in any of the data collection methods used in this test."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // Get casing condition
 resumeProcedure = false;
 sdInfo = "";
 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 sdInfo = Serial.readString();
 {
 if (sdInfo != "")
 {
 Serial.print(F("Overall Test Comments: "));
 Serial.println(sdInfo);

156 | P a g e

 Serial.println();
 Serial.println();

 // Info Log for Case Condition
 sdInfo = ("Overall Test Comments: ") + sdInfo;
 writeInfoDataToCard();

 resumeProcedure = true;
 }
 }
 }
 }

 // ===
 // System Log for Test Complete
 // get date and time
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 sdTimeStamp = timeMillis;
 sdRTCStamp = bufferTime;
 sdMessage = (F("Motor Test"));
 sdResult = (F("Concluded"));
 writeSysDataToCard();

 // Info Log for Test Concluded
 sdInfo = ("Testing session concluded at ") + sdRTCStamp;
 writeInfoDataToCard();

 // Info Log for testing complete
 Serial.println(serialLine);
 Serial.print(F("Testing session concluded at "));
 dateTimeSerialMonitor();
 Serial.println(serialLine);
}

RGB_LED_Lamp_Settings.ino
/**
 **
 * *
 * RGB LED LAMP SETTINGS *
 * *
 **
 **/

// define variables
 int valueRed = 0;
 int valueGreen = 0;
 int valueBlue = 0;

// choose a value between 0 and 255 on each variable to change the color.
void rgbRed(void)
//Solid red lamp
{
 valueRed = 255;
 valueGreen = 0;
 valueBlue = 0;
}

void rgbGreen(void)
//Solid green lamp
{
 valueRed = 0;
 valueGreen = 255;

157 | P a g e

 valueBlue = 0;
}

void rgbBlue(void)
//Solid blue lamp
{
 valueRed = 0;
 valueGreen = 0;
 valueBlue = 255;
}

void rgbYellow(void)
//Solid yellow lamp
{
 valueRed = 255;
 valueGreen = 70;
 valueBlue = 0;
}

void rgbSteadyLamp(void)
{
 analogWrite(RED, valueRed);
 analogWrite(GREEN, valueGreen);
 analogWrite(BLUE, valueBlue);
}

void rgbFlashLamp(void)
{
 for (int x = 1; x < 50; x++)
 {
 analogWrite(RED, valueRed);
 analogWrite(GREEN, valueGreen);
 analogWrite(BLUE, valueBlue);

 delay(250);

 analogWrite(RED, 0);
 analogWrite(GREEN, 0);
 analogWrite(BLUE, 0);

 delay(250);
 }
}

void rgbStrobeLamp(void)
{
 for (int x = 1; x < 50; x++)
 {
 analogWrite(RED, valueRed);
 analogWrite(GREEN, valueGreen);
 analogWrite(BLUE, valueBlue);

 delay(15);

 analogWrite(RED, 0);
 analogWrite(GREEN, 0);
 analogWrite(BLUE, 0);

 delay(500);
 }
}

158 | P a g e

Sensor_Data_BME280.ino
/**
 **
 * *
 * Environmental Sensors *
 * *
 **
 **/

void sensorEnviroValues(void)
{
 // ===
 // get environmental temperature, pressure and humdity just prior to ignition
 sdTemperature = (sensorEnvironment.readTemperature());
 sdPressure = (sensorEnvironment.readPressure()/100.0F);
 sdHumidity = (sensorEnvironment.readHumidity());
}

Serial_Monitor_Date_Time.ino
/**
 **
 * *
 * DATE AND TIME DISPLAYED ON SERIAL MONITOR *
 * *
 **
 **/

void dateTimeSerialMonitor(void)
{
 // ===
 // get date and time
 now = rtc.now();

 //Time
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 Serial.print(bufferTime);
 Serial.print(F("hrs - "));

 //Date
 sprintf(bufferDate,"%02u/%02u/%4u ",now.month(),now.day(),now.year());
 Serial.println(bufferDate);
 sdDate = bufferDate;
}

Serial_Monitor_Splash_Screen.ino
/**
 **
 * *
 * SPLASH SCREEN ON SERIAL MONITOR *
 * *
 **
 **/

void splashScreenSerialMonitor(void)
{
 // ===
 // Display Program Info on the Serial Monitor

159 | P a g e

 Serial.println(serialLine);
 Serial.println();
 Serial.println(F("Austin Aerospace Educational Network"));
 Serial.println(F("Ground Support Project"));
 Serial.println();
 Serial.println(F("Project: Model Rocket Motor Test Stand"));
 Serial.println(F(" Using the Arduino Mega2560 Microcontroller"));
 Serial.print(F("Version: "));
 Serial.print(prgMajor); Serial.print(F(".")); Serial.print(prgMinor); Serial.print(F("."));
Serial.println(prgPatch);
 Serial.println();
 Serial.println(F("https://rocketryjournal.wordpress.com"));
 Serial.println();
 Serial.println(serialLine);
}

Setup_BME280_Sensor.ino
/**
 **
 * *
 * SETUP BME280 SENSOR *
 * *
 **
 **/

void setupBmeSensor(void)
{
 // ===
 // Setup for BME280 Sensor
 bool result;

 Serial.println(F("Initializing BME280 Environmental Sensor. Standby..."));

 result = sensorEnvironment.begin();
 if (!result)
 {
 Serial.println(F("Environmental sensor initialization failed."));
 Serial.println(F("Please check sensor's address and/or connection."));
 Serial.println(serialLine);

 // DateTime of failure
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show failure on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Envir Sensr Fail"));
 lcd.setCursor(0,1);
 lcd.print(F("Check Connection"));

 // show steady red LED lamp
 rgbRed();
 rgbSteadyLamp();

 // System Log for BME 280 Sensor
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing BME280 environmental sensor"));
 sdResult = (F("Failed"));
 writeSysDataToCard();

160 | P a g e

 // pause forever
 while (1);
 }

 // card initialized properly and is ready to start writing data
 Serial.println(F("Environmental sensor initialization successful."));
 Serial.println();

 // DateTime of success
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // show success on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Enviro Sensor "));
 lcd.setCursor(0,1);
 lcd.print(F("Initialized "));
 delay(2000);

 // System Log for BME 280 Sensor
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing BME280 environmental sensor"));
 sdResult = (F("Successful"));
 writeSysDataToCard();
}

Setup_Date_Time_Check.ino
/**
 **
 * *
 * SETUP CHECK DATE AND TIME *
 * *
 **
 **/

void setupDateTimeCheck(void)
{
 // ==
 // This function displays the current date and time
 // If incorrect, the User can enter the correct date and/or time

 // get date and time
 // now = rtc.now();

 // show test preparation in progress on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Date Time Check "));
 lcd.setCursor(0,1);
 lcd.print(F(" In Progress "));

 // ==
 // Show Date/Time information
 // Display instructions on Serial Monitor

 // get user input
 Serial.println();
 Serial.println(F("If this is correct, press Y for 'Yes'."));
 Serial.println(F("If this is incorrect, press N for 'No'."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 // clear serial buffer
 while(Serial.available())

161 | P a g e

 {
 char charInput = Serial.read();
 }

 // Determine if user answered Yes or No
 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();
 {
 if (charInput == 'n' || charInput == 'N')
 {
 // Display time is incorrect, prompt for correct data
 Serial.println(serialLine);
 Serial.println(F("Date and/or time is incorrect"));
 Serial.println(F("You will be prompted to enter the correct date and
time"));
 Serial.println();

 // call date time entry
 // add function to input date and time
 setupDateTimeEntry();

 resumeProcedure = true;
 }
 else if (charInput == 'y' || charInput == 'Y')
 {
 // Display time is accurate and continue
 Serial.println(F("Date and time are accurate"));
 Serial.println();
 Serial.println(serialLine2);

 // System Log
 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u
",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 syncRTCStamp = bufferTime;
 syncTimeStamp = timeMillis;
 syncMessage = (F("Computer/Real Time Clock Synchronization"));
 syncResult = (F("In Sync"));

 resumeProcedure = true;

 // display delay
 delay(2000);
 }
 }
 }
 }

}

162 | P a g e

Setup_Date_Time_Entry.ino
**
 **
 * *
 * SETUP CHECK DATE AND TIME *
 * *
 **
 **/

void setupDateTimeEntry(void)
{
 // ==
 // This function allows the user to enter the current date and time

 // ===
 // date variables
 int entryMonth = "";
 int entryDay = "";
 int entryYear = "";
 int entryHour="";
 int entryMinute = "";
 //String entrySync = "";

 // ===
 // Enter new date

 // Display Month entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Date Entry: Month"));
 Serial.println();
 Serial.println(F("Enter the number for the current month."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 entryMonth = Serial.parseInt();
 if (entryMonth != 0)
 {
 // check to see month entry is between 1 and 12
 if ((entryMonth >= 1) and (entryMonth <=12))
 // Display month entered
 Serial.print(F("Month entered: "));
 Serial.println(entryMonth);
 Serial.println();
 resumeProcedure = true;
 }
 }
 }

 // Display Day entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Date Entry: Day"));
 Serial.println();
 Serial.println(F("Enter the number for the current day."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 entryDay = Serial.parseInt();

163 | P a g e

 if (entryDay != 0)
 {
 // check to see day entry is between 1 and 31
 if ((entryDay >= 1) and (entryDay <=31))
 // Display day entered
 Serial.print(F("Day entered: "));
 Serial.println(entryDay);
 Serial.println();
 resumeProcedure = true;
 }
 }
 }

 // Display Year entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Date Entry: Year"));
 Serial.println();
 Serial.println(F("Enter the number for the current day."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 entryYear = Serial.parseInt();
 if (entryYear != 0)
 {
 // check to see year entry is 2024 or greater
 if (entryYear >= 2024)
 // Display year entered
 Serial.print(F("Year entered: "));
 Serial.println(entryYear);
 Serial.println();
 resumeProcedure = true;
 }
 }
 }

 // ===
 // Enter new time

 // Display hour entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Time Entry: Hour"));
 Serial.println();
 Serial.println(F("Enter the number for the current hour in 24-hour time."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 entryHour = Serial.parseInt();
 if (entryHour != 0)
 {
 // check to see hour entry is between 0 and 23
 if ((entryHour >= 0) and (entryHour <=23))
 // Display month entered
 Serial.print(F("Hour entered: "));
 Serial.println(entryHour);
 Serial.println();
 resumeProcedure = true;
 }
 }
 }

164 | P a g e

 // Display minute entry instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Time Entry: Minute"));
 Serial.println();
 Serial.println(F("Enter the number for the current minute."));
 Serial.println(F("Then hit the 'ENTER' key from the Serial Monitor"));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 entryMinute = Serial.parseInt();
 if (entryMinute != -1)
 {
 // check to see minute entry is between 0 and 59
 if ((entryMinute >= 0) and (entryMinute <=59))
 // Display minute entered
 Serial.print(F("Minute entered: "));
 Serial.println(entryMinute);
 Serial.println();
 resumeProcedure = true;
 }
 }
 }

 // ===
 // Display sync instructions on Serial Monitor
 Serial.println(serialLine2);
 Serial.println(F("Time Entry: Sync to Computer"));
 Serial.println();
 Serial.println(F("Enter 's' the Serial Monitor then hit the'ENTER' key"));
 Serial.println(F("When the entered minute and computer minute align."));
 Serial.println();

 resumeProcedure = false;

 while (resumeProcedure == false)
 {
 if (Serial.available() > 0)
 {
 charInput = Serial.read();

 if (charInput == 's' || charInput == 'S')
 {
 // assign new date and time to RTC
 rtc.adjust(DateTime(entryYear, entryMonth, entryDay, entryHour, entryMinute,
0));

 // System Log
 //DateTime
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 syncRTCStamp = bufferTime;
 syncTimeStamp = timeMillis;
 syncMessage = (F("Computer/Real Time Clock Update"));
 syncResult = (F("Clocks now synchronized"));

 // display sync completed
 Serial.println(serialLine);
 Serial.println(F("Sync Completed"));
 Serial.println(serialLine);
 resumeProcedure = true;

 // display delay
 delay(2000);

165 | P a g e

 }
 }
 }

}

Setup_Fire_Control_System.ino
/**
 **
 * *
 * SETUP FIRE CONTROL SYSTEM *
 * *
 **
 **/

void setupFireControl(void)
{
 // ===
 // Setup Fire Control System
 // Initialize Fire Control Button
 Serial.println(F("Initializing Fire Control System. Standby..."));

 // Setup Start pin for interrupt
 pinMode(pinStartButton, INPUT_PULLUP);

 // Setup Fire pin for interrupt
 pinMode(pinFireButton, INPUT_PULLUP);

 // Setup fire relay pin
 pinMode(pinFireRelay, OUTPUT);

 // Fire Control System now active
 Serial.println(F("Fire Control System initialization successful."));
 Serial.println();

 // DateTime of success
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // Show success on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F("Fire Ctrl System"));
 lcd.setCursor(0,1);
 lcd.print(F("Initialized "));

 // System Log for Fire Control System
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing Fire Control System"));
 sdResult = (F("Successful"));
 writeSysDataToCard();

 delay(2000);

}

166 | P a g e

Setup_HX711.ino
/**
 **
 * *
 * SETUP HX711 LOAD CELL *
 * *
 **
 **/

void setupHX711(void)
{
 // ===
 // Setup for HX711
 Serial.println(F("Initializing Load Cell and HX711. Standby..."));

 // set up Calibration buttons
 pinMode(pinCalibrate, INPUT_PULLUP);

 // start load cell and HX711 test
 loadCell.begin();

 timeStabilizing = 2000; // precision right after power-up can be improved
 // by adding a few seconds of stabilizing time
 performTare = true; // set this to false if you don't want tare to
 // be performed in the next step

 loadCell.start(timeStabilizing, performTare);

 if (loadCell.getTareTimeoutFlag() || loadCell.getSignalTimeoutFlag()) // added signal time
out again
 {
 Serial.println(F("Load Cell/HX711 initialization failed."));
 Serial.println(F("Please check sensor's connections and pin designations."));
 Serial.println(serialLine);

 //DateTime of failure
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show failure on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Load Sensor Fail"));
 lcd.setCursor(0,1);
 lcd.print(F("Check Connection"));

 // show steady red LED lamp
 rgbRed();
 rgbSteadyLamp();

 // System Log for HX711 Sensor
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing Load Cell/HX711 sensor"));
 sdResult = (F("Failed"));
 writeSysDataToCard();

 // pause forever
 while (1);
 }

 // card initialized properly and is ready to start writing data
 Serial.println(F("Load Sensor/HX711 initialization successful."));
 Serial.println();

 // time of success

167 | P a g e

 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 // show success on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Load Sensor "));
 lcd.setCursor(0,1);
 lcd.print(F("Initialized "));

 // System Log for HX711 Sensor
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing Load Cell/HX711 sensor"));
 sdResult = (F("Successful"));
 writeSysDataToCard();

 delay(2000);
}

Setup_LCD_I2C.ino
/**
 **
 * *
 * SETUP 16x2 LCD I2C *
 * *
 **
 **/

void setupLcdDisplay(void)
{
 // ===
 // Setup for LCD display
 lcd.init(); //initialize the lcd
 lcd.backlight(); //open the backlight

 // Display splash screen on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F("Austin Aerospace"));
 lcd.setCursor(0,1);
 lcd.print(F(" Network "));

 delay(2500);

 // Display splash screen on LCD screen
 lcd.setCursor(0,0);
 lcd.print(F(" Begin System "));
 lcd.setCursor(0,1);
 lcd.print(F(" Initialization "));

 // display same on Serial monitor
 Serial.println(F("Begin Test Stand System and Sensor Initilization Process"));

 delay(2500);
}

168 | P a g e

Setup_LED_Display.ino
/**
 **
 * *
 * SETUP LED DISPLAY *
 * *
 **
 **/

void setupLedDisplay(void)
{
 // Constants for BOOT for LED clock
 const uint8_t SEG_BOOT[] =
 {
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G, // B
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F, // O
 SEG_D | SEG_E | SEG_F | SEG_G // t
 };

 // ===
 // Setup for 4-Digit LED display
 // Set the display brightness (0-7):
 clockDisplay.setBrightness(5);

 // Clear the display:
 clockDisplay.clear();

 // show BOOT on LED
 clockDisplay.setSegments(SEG_BOOT);
}

Setup_MicroSD_Card.ino
/**
 **
 * *
 * SETUP MICRO SD CARD *
 * *
 **
 **/

void setupMicroSDCard(void)
{
 // ==
 // variable declaration
 const int chipSelect = 53; //pin number for CS on Mega2560 board (D53)

 // ==
 // initialize Micro SD card
 Serial.println();
 Serial.println(F("Initializing Micro SD card. Standby..."));

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect))
 {
 Serial.println(F("Card initialization failed, or not present. Replace card and reset
system."));
 Serial.println(serialLine);

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show failure on LCD

169 | P a g e

 lcd.setCursor(0,0);
 lcd.print(F(" SD Card Fail "));
 lcd.setCursor(0,1);
 lcd.print(F("Check Card-Reset"));

 // sound warning tone and flash rgb red
 // rgbRedWarningBuzzerFlash();

 // Show steady redlamp
 rgbRed();
 rgbSteadyLamp();

 // don't do anything more:
 while (1);
 }

 // card initialized properly and is ready to start writing data
 Serial.println(F("Micro SD card initialization successful."));
 Serial.println();

 // show success on LCD
 lcd.setCursor(0,0);
 lcd.print(F("MicroSD Card "));
 lcd.setCursor(0,1);
 lcd.print(F("Initialized "));
 delay(2000);

 // ==
 // Setup Motor Log file name

 // create new file name - from altduino.ino
 // create a new file
 for (uint8_t i = 0; i < 100; i++)
 {
 fileMotorLog[6] = i/10 + '0';
 fileMotorLog[7] = i%10 + '0';

 if (! SD.exists(fileMotorLog))
 {
 break; // leave the loop!
 }
 }

 // write motor headers to CSV file
 File fileMotorData = SD.open(fileMotorLog, FILE_WRITE);

 // Data to write to SD card
 dataString = "";
 dataString = "Time Stamp,Load Cell Reading (n),Total Impulse (n)";
 fileMotorData.println(dataString);
 fileMotorData.close();

 // ==
 // Setup System Log file name
 // Use same log number as motor file
 fileSystemLog[6] = fileMotorLog[6];
 fileSystemLog[7] = fileMotorLog[7];

 // write headers to CSV file
 File fileSystemData = SD.open(fileSystemLog, FILE_WRITE);

 // Log header to write to SD card
 dataString = "";
 dataString = "RTC Stamp,Microsecond Time Stamp,Message,Result";
 fileSystemData.println(dataString);
 // fileSystemData.close();

 dataString = "-,0,Test Stand Software Boot,Initialization";
 fileSystemData.println(dataString);
 fileSystemData.close();

170 | P a g e

 // ==
 // Setup Information Log file name
 // Use same log number as motor file
 fileInfoLog[6] = fileMotorLog[6];
 fileInfoLog[7] = fileMotorLog[7];

 // write headers to CSV file
 File fileInfoData = SD.open(fileInfoLog, FILE_WRITE);

 // Log header to write to SD card
 fileInfoData.println(F("Austin Aerospace Educational Network"));
 fileInfoData.println(F("Arduino Ground Support Project"));
 fileInfoData.println();
 fileInfoData.println(F("Project: Model Rocket Motor Test Stand"));
 fileInfoData.print(F("Version: "));
 fileInfoData.print(prgMajor); fileInfoData.print(F(".")); fileInfoData.print(prgMinor);
fileInfoData.print(F(".")); fileInfoData.println(prgPatch);
 fileInfoData.println();
 fileInfoData.println(F("https://rocketryjournal.wordpress.com"));
 fileInfoData.println();
 fileInfoData.println(serialLine);

 // get current date and time
 now = rtc.now();
 sprintf(bufferDate,"%02u/%02u/%4u ",now.month(),now.day(),now.year());
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());

 fileInfoData.print(F("Motor Test Report for "));
 fileInfoData.print(bufferDate);
 fileInfoData.print(F("beginning at "));
 fileInfoData.print(bufferTime);
 fileInfoData.println(F("hrs."));

 fileInfoData.println(serialLine);
 fileInfoData.close();
 writeInfoDataToCard();

 // ==
 // System log for RTC
 sdRTCStamp = rtcRTCStamp;
 sdTimeStamp = rtcTimeStamp;
 sdMessage = rtcMessage;
 sdResult = rtcResult;
 writeSysDataToCard();

 // System log for Time Sync
 sdTimeStamp= "";
 sdRTCStamp = syncRTCStamp;
 sdTimeStamp = syncTimeStamp;
 sdMessage = syncMessage;
 sdResult = syncResult;
 writeSysDataToCard();

 // System Log for MicroSD Card
 timeMillis = micros()/1000000.f;
 sdRTCStamp = bufferTime;
 sdTimeStamp = timeMillis;
 sdMessage = (F("Initializing MicroSD Card"));
 sdResult = (F("Successful"));
 writeSysDataToCard();

}

171 | P a g e

Setup_Real_Time_Clock.ino
/**
 **
 * *
 * SETUP REAL TIME CLOCK *
 * *
 **
 **/

void setupRTC(void)
{
 // ==
 // Setup for RTC
 Serial.println(serialLine);
 Serial.println();
 Serial.println(F("Initializing Real Time Clock (RTC) Module. Standby..."));

 // Check if RTC is connected correctly
 if (! rtc.begin())
 {
 // show error in Serial Monitor
 Serial.println(F("Unable to find Real Time Clock"));

 // show error on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Unable to find "));
 lcd.setCursor(0,1);
 lcd.print(F("Real Time Clock "));

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show steady red LED lamp
 rgbRed();
 rgbSteadyLamp();

 // pause program
 while (1);
 }
 else
 {
 //show success in Serial Monitor
 Serial.println(F("Real Time Clock initialized"));

 // show success on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Real Time Clock "));
 lcd.setCursor(0,1);
 lcd.print(F("Initialized "));
 delay(2000);
 }

 // Check if the RTC lost power and if so, set the time
 if (rtc.lostPower())
 {
 Serial.println(F("It appears the Real Time Clock lost power."));
 Serial.println(F("Adjusting date and time to equal sketch compile"));
 Serial.println();

 // show power loss on LCD
 lcd.setCursor(0,0);
 lcd.print(F(" RTC Power Loss "));
 lcd.setCursor(0,1);
 lcd.print(F(" Adjusting... "));
 delay(2000);

 // The following line sets the RTC to the date & time this sketch
 // was compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

172 | P a g e

 }
 else
 {
 Serial.println(F("No indication of RTC power loss"));
 Serial.println();
 }

 // Show Date and Time
 Serial.print(F("The current time and date is "));
 dateTimeSerialMonitor();
 timeMillis = micros()/1000000.f;

 // System Log
 now = rtc.now();
 sprintf(bufferTime,"%02u:%02u:%02u ",now.hour(),now.minute(),now.second());
 timeMillis = micros()/1000000.f;

 rtcRTCStamp = bufferTime;
 rtcTimeStamp = timeMillis;
 rtcMessage = (F("Initializing Real Time Clock"));
 rtcResult = (F("Successful"));

 delay(1000);
}

Strobe_LED_Bulb.ino
/**
 **
 * *
 * STROBE WHITE LED BULB *
 * *
 **
 **/

void ledWhiteStrobeLamp(void)
{
 digitalWrite(ledStrobe, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(15);

 digitalWrite(ledStrobe, LOW); // turn the LED off by making the voltage LOW
 delay(500);

}

Write_Info_Data_To_SD_Card.ino
/**
 **
 * *
 * WRITE INFORMATION DATA TO SD CARD *
 * *
 **
 **/

 void writeInfoDataToCard(void)
 {
 // ===
 // Main Loop for MicroSD Card

 // Open the file. Note that only one file can be open at a time,

173 | P a g e

 // so you have to close this one before opening another.

 // TXT stands for "Text". It is a plain text file format. It can be
 // read by any text or word processor program.

 File fileInfoData = SD.open(fileInfoLog, FILE_WRITE);

 // if the file is available, write to it:
 if (fileInfoData)
 {
 dataString = sdInfo;
 fileInfoData.println(dataString);
 fileInfoData.close();
 }
 else // if the file isn't open, pop up an error:
 {
 File fileSystemData = SD.open(fileSystemLog, FILE_WRITE);

 sdTimeStamp = String(timeMillis,10);

 // write error to sd card if possible
 sdMessage = "Info Data Log";
 sdResult = "Card Write Error";
 dataString = sdRTCStamp + "," + sdTimeStamp + "," + sdMessage + "," + sdResult;
 fileSystemData.println(dataString);
 fileSystemData.close();

 // Show error on Serial Monitor
 Serial.println(F("Error opening Info data log..."));

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show error on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Card Write Error"));
 lcd.setCursor(0,1);
 lcd.print(F("Opening Info Log"));

 }

 delay(1); // Pause for 1 milliseconds.
 }

Write_Motor_Data_To_SD_Card.ino
/**
 **
 * *
 * WRITE MOTOR DATA TO SD CARD *
 * *
 **
 **/

 void writeMotorDataToSDCard(void)
 {
 // ===
 // Main Loop for MicroSD Card

 // Open the file. Note that only one file can be open at a time,
 // so you have to close this one before opening another.

 // CSV stands for "Comma Separated Values". It is a plain text file
 // format where each value is separated by a coma. It can be read by
 // nearly all spreadsheet and database programs.

174 | P a g e

 File fileMotorData = SD.open(fileMotorLog, FILE_WRITE);

 // if the file is available, write to it:
 if (fileMotorData)
 {
 // create coma separated data string from sensor readings
 sdTimeStamp = String(timeMillis,10);
 sdImpulse = String(scaleNewtons,10);
 sdTotalImpulse = String(impulseTotal,10);

 dataString = sdTimeStamp + "," + sdImpulse + "," + sdTotalImpulse;
 fileMotorData.println(dataString);
 fileMotorData.close();
 }
 else // if the file isn't open, pop up an error:
 {
 File fileSystemData = SD.open(fileSystemLog, FILE_WRITE);

 sdTimeStamp = String(timeMillis,10);

 // write error to sd card if possible
 sdMessage = "Motor Data Log";
 sdResult = "Card Write Error";
 dataString = sdRTCStamp + "," + sdTimeStamp + "," + sdMessage + "," + sdResult;
 fileSystemData.println(dataString);
 fileSystemData.close();

 // Show error on Serial Monitor
 Serial.println(F("Error opening Motor data log..."));

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show error on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Card Write Error"));
 lcd.setCursor(0,1);
 lcd.print(F(" Motor Data Log "));

 }

 delay(1); // Pause for 1 milliseconds.
 }

Write_Sys_Data_To_SD_Card.ino
/**
 **
 * *
 * WRITE SYSTEM DATA TO SD CARD *
 * *
 **
 **/

 void writeSysDataToCard(void)
 {
 // ===
 // Main Loop for MicroSD Card

 // Open the file. Note that only one file can be open at a time,
 // so you have to close this one before opening another.

 // CSV stands for "Comma Separated Values". It is a plain text file
 // format where each value is separated by a coma. It can be read by
 // nearly all spreadsheet and database programs.

175 | P a g e

 File fileSystemData = SD.open(fileSystemLog, FILE_WRITE);

 // if the file is available, write to it:
 if (fileSystemData)
 {
 dataString = sdRTCStamp + "," + sdTimeStamp + "," + sdMessage + "," + sdResult;
 fileSystemData.println(dataString);
 fileSystemData.close();
 }
 else // if the file isn't open, pop up an error:
 {
 sdTimeStamp = String(timeMillis,10);

 // write error to sd card if possible
 sdMessage = "SYS Data Log";
 sdResult = "Card Write Error";
 dataString = sdRTCStamp + "," + sdTimeStamp + "," + sdMessage + "," + sdResult;
 fileSystemData.println(dataString);
 fileSystemData.close();

 // Show error on Serial Monitor
 Serial.println(F("Error opening SYS data log..."));

 // show FAIL on LED
 clockDisplay.setSegments(SEG_FAIL);

 // show error on LCD
 lcd.setCursor(0,0);
 lcd.print(F("Card Write Error"));
 lcd.setCursor(0,1);
 lcd.print(F(" SYS Data Log "));
 }
 delay(1); // Pause for 1 milliseconds.
 }

Compilation Notes - Arduino Mega2560
Sketch uses 67988 bytes (26%) of program storage space. Maximum is 253952 bytes.
Global variables use 2477 bytes (30%) of dynamic memory, leaving 5715 bytes for local variables.
Maximum is 8192 bytes.

176 | P a g e

A4
Parts Listing
Electronics

Test Stand Platform Electronics Housing
Item Vendor URL Price
ELEGOO MEGA R3 Board ATmega 2560 Amazon https://www.amazon.com/dp/B01H4ZLZLQ $20.99
Digital Load Cell Weight Sensor Amazon https://www.amazon.com/gp/product/B08KRWY43Y $7.59
SparkFun Load Cell Amplifier - HX711 Amazon https://www.amazon.com/gp/product/B079LVMC6X $10.95
HiLetgo Micro SD TF Card Adater Reader Module
6Pin SPI Interface

Amazon https://www.amazon.com/gp/product/B07BJ2P6X6 5 for $6.99

BME280 Environmental Sensor Amazon https://www.amazon.com/gp/product/B07P4CWGGK $15.85
DS3231 AT24C32 IIC Real Time Clock Amazon https://www.amazon.com/gp/product/B07Q7NZTQS 2 for $5.99
5V 1 Channel Relay Module Amazon https://www.amazon.com/gp/product/B07874KSLY 5 for $7.99
Micro SD TF Card Adater Reader Amazon https://www.amazon.com/gp/product/B07BJ2P6X6 5 for $6.99
Mini Active Piezo Buzzers Amazon https://www.amazon.com/gp/product/B07VK1GJ9X 10 for $6.99
10mm RGB Multicolor LED Diode Lights

Amazon https://www.amazon.com/gp/product/B01CI6EWHK 50 for $9.99

5mm White (4 needed) and red (1 needed) LED *
Amazon

https://www.amazon.com/ELEGOO-Diffused-
Assorted-Colors-Arduino/dp/B0739RYXVC

100 for
$11.99

220Ω Resistors (Need 16) *
Amazon

https://www.amazon.com/EDGELEC-Resistor-Tolerance-
Multiple-Resistance/dp/B07QK9ZBVZ

100 for
$5.99

1KΩ Resistor (Need 1) *
Amazon

https://www.amazon.com/EDGELEC-Resistor-Tolerance-
Resistance-Optional/dp/B07HDDWFDD

100 for
$5.49

Banana Clips (2 pair)
Amazon https://www.amazon.com/gp/product/B07KG11GL3/

20 pair for
$12.89

177 | P a g e

Item Vendor URL Price
Alligator Clips Harbor

Freight
https://www.harborfreight.com/18-inch-low-voltage-multi-

colored-test-leads-66717.html
5 pait for

$3.59

4 AA Battery Holder with Leads Amazon https://www.amazon.com/LAMPVPATH-Battery-Holder-
Leads-Wires/dp/B07T7MTRZX

2 for $5.98

Protective Wire Wrap Harbor
Freight

https://www.harborfreight.com/electrical/electrician-s-
tools/wire-running/wire-wrap/3-8-eighth-inch-x-10-ft-

protective-wire-wrap-66987.html

10-feet for
$3.49

DB15 RS232 Serial D-SUB Solder Cup Connectors Amazon https://www.amazon.com/gp/product/B09VG9CNS7 5 pair for
$9.99

DB15 Extension Cable Double Shielded, DB15 Male
to Male Cable 10FT

Amazon https://www.amazon.com/gp/product/B093P7T2J7 $14.99

USB-A to USB-B 2.0 Cable, 10 foot Amazon https://www.amazon.com/dp/B00NH13DV2 $9.89

Test Stand Remote Head

Item Vendor URL Price

TM1637 4-Digit 7-Segment LED Display Amazon https://www.amazon.com/gp/product/B01DKISMXK 2 for $6.99

I2C 1602 LCD Display Module Amazon https://www.amazon.com/gp/product/B07S7PJYM6 2 for $9.99

Tactile switches with caps (3 needed) * Amazon https://www.amazon.com/Gikfun-12x12x7-3-Tactile-
Momentary-Arduino/dp/B01E38OS7K

25 pieces for
$8.68

SPST Momentary Push Button Switch Amazon https://www.amazon.com/gp/product/B08JHSG717 6 for $8.99

PCB Prototype Board * Amazon https://www.amazon.com/ELEGOO-Prototype-
Soldering-Compatible-Arduino/dp/B072Z7Y19F

32 pieces for
$9.99

178 | P a g e

* Can obtain all of these components in a single set. Set contains PCB Boards, Header Connectors, 600 Assorted Resistors (from 10Ω
 to 1MΩ), Screw Terminal Block, 50 LED diodes in 5 colors & 12 Tactile Cap Switch with multi-color covers - $16.99 at Amazon
 https://www.amazon.com/gp/product/B07QC5X21L - $16.99

179 | P a g e

A5
References

 "3D Printed Rocket Test Stand" by -Zander. Instructables,
https://www.instructables.com/3D-Printed-Rocket-Test-Stand

 "Arduino - LCD I2C" Arduino Getting Started,
https://arduinogetstarted.com/tutorials/arduino-lcd-i2c

 "Arduino with Load Cell and HX711 Amplifier (Digital Scale)" Random Nerd Tutorials,
https://randomnerdtutorials.com/arduino-load-cell-hx711/

 "Conducting a Test" Glenn Research Center, https://www1.grc.nasa.gov/historic-
facilities/rocket-engine-test-facility/conducting-a-test/

 “Datalogger” (From within the Arduino IDE)
File > Examples > SD > Datalogger

 "Design and Characterization of a Lab-Scale Hybrid Rocket Test Stand" by James C.
Thomas, Jacob M. Stahl, Gordon R. Morrow, Eric L. Petersen, Texas A&M University,
College Station, Texas. July 2016. American Institute of Aeronautics and Astronautics.

 "Effect of Altitude on Rocket Engine Performance" by Ellis Langford. R&D Report for
NARAM 42.

 "Effect of Extreme Cold on Model Rocket Motors" by Ric Gaff. August 16, 1984. R&D
Report for NARAM-26

 "Effect of Humidity on Model Rocket Motors" by Caroline Steele. August 2004. R&D
Report for NARAM-46

 "Getting Started with Load Cells" by Sarah Al-Mutlaq. Sparkfun,
https://learn.sparkfun.com/tutorials/getting-started-with-load-cells

 “Hobby Rocket Motor Data”. ThrustCurve.
https://www.thrustcurve.org/info/motorstats.html

 "How Do You Measure the Thrust of a Rocket Engine?" April 18, 2022. National
Institute of Standards and Technology (NIST),https://www.nist.gov/how-do-you-
measure-it/how-do-you-measure-thrust-rocket-engine

 “Model Rocket Engines” Estes Tech Note 1. 1972

180 | P a g e

 “Model Rocket Engines” by William Simon (Revised by Thomas Beach and Joyce
Guzik). Estes Model Rocketry Tech Manual, pg 14. 1993

 “Model Rocket Engine Performance.” Estes Tech Note 2 by Edwin D. Brown.

 "Model Rocket Motor Dynamometer (Arduino Uno)" by nightmare.on.scam.street.
Instructables, https://www.instructables.com/Model-Rocket-Motor-Dynamometer-
Arduino-Uno/

 "Model Rocket Motor Test Stand" by NM Rocketry. September 6, 2020. Arduino Project
Hub, https://projecthub.arduino.cc/nmrsthrust/model-rocket-motor-test-stand-f8a42f

 NAR Standards and Testing Committee Motor Testing Manual Version 1.5. July 1, 2011.

 "Rocket Motor Static Testing" by Richard Nakka. May 14, 2020.Richard Nakka's
Experimental Rocketry Web Site, https://www.nakka-rocketry.net/static.html

 "Standards & Testing" by the National Association of Rocketry Standards and Testing
Committee. Sport Rocketry Magazine, November/December 2010, Pg 42-47.

 "Static Rocket Fire Test rig" byzuegnull. September 25, 2021. Thingiverse,
https://www.thingiverse.com/thing:4974745

 "Stennis Space Center: NASA's Largest Rocket Testing Site" by Nola Taylor Tillman.
January 25, 2018. Space.com, https://www.space.com/39498-stennis-space-center.html

 "Test Your Engine" Lesson Plans. Estes Industries,
https://edu.estesrockets.com/products/test-your-engines-lesson-plan

 "Using a Model Rocket-Engine Test Stand in a Calculus Course" -
https://pubs.nctm.org/view/journals/mt/95/7/article-p516.xml

 “What’s in a Rocket Motor?” NAR Member Guidebook, 2022 Volume 14. pg 12.

181 | P a g e

A6
Project Links
Tinkercad Drawings: There are a total of six Tinkercad drawings available for this project.
They are:

• Overall Design - https://www.tinkercad.com/things/5PkXrbvQFgC-aaen-rocket-motor-
test-stand

• Electronics Housing - https://www.tinkercad.com/things/jjsRjP7aWB7-test-stand-
individual-and-assembled-electronic-component-mounts

• Remote Head - https://www.tinkercad.com/things/gyea9P4lKON-test-stand-remote-head
• Motor Mounts - https://www.tinkercad.com/things/iWNT7Z2hdte-test-stand-motor-

mount-components
• Small Parts - https://www.tinkercad.com/things/4o926bDtEKG-test-stand-small-parts
• Design Elements - https://www.tinkercad.com/things/2oOwyYvD2nV-test-stand-design-

elements

SourceForge: To download the Arduino code as a single zip file, visit our SourceForge project
page at https://sourceforge.net/p/project-vulcan/

Thingiverse: You can download all of the STL files for this project from our Thingiverse page
at https://www.thingiverse.com/thing:6792050

182 | P a g e

https://www.thingiverse.com/thing:6792050
https://sourceforge.net/p/project-vulcan/
https://www.tinkercad.com/things/2oOwyYvD2nV-test-stand-design-elements
https://www.tinkercad.com/things/2oOwyYvD2nV-test-stand-design-elements
https://www.tinkercad.com/things/4o926bDtEKG-test-stand-small-parts
https://www.tinkercad.com/things/iWNT7Z2hdte-test-stand-motor-mount-components
https://www.tinkercad.com/things/iWNT7Z2hdte-test-stand-motor-mount-components
https://www.tinkercad.com/things/gyea9P4lKON-test-stand-remote-head
https://www.tinkercad.com/things/jjsRjP7aWB7-test-stand-individual-and-assembled-electronic-component-mounts
https://www.tinkercad.com/things/jjsRjP7aWB7-test-stand-individual-and-assembled-electronic-component-mounts
https://www.tinkercad.com/things/5PkXrbvQFgC-aaen-rocket-motor-test-stand
https://www.tinkercad.com/things/5PkXrbvQFgC-aaen-rocket-motor-test-stand

	01 Introduction
	What is a Test Stand?
	The Basic Layout of the Project
	Looking at What Already Exists

	Before we start our project
	We Are All Learning

	02 Rocket Motor Basics
	Typical Engine Sizes
	The Engine Coding System
	Total Impulse
	What’s a Newton?

	Average Thrust
	Delay Time

	Thrust Curves
	Rocket Motor Design

	03 Rocket Motor Test Stands
	Our Test Stand

	04 Designing the Test Stand
	Research
	Initial Designs

	05 Components
	The Test Stand Electrical Components
	Elegoo Mega2560
	Load Cell & Amplifier
	MicroSD Card Module
	LEDs
	RGB LEDs
	Red and White/Clear LEDs

	Piezo Buzzer
	BME280 Environmental Sensor
	Real Time Clock
	Firing Relay
	Resistors
	AA Battery Holder

	The Remote Head Electrical Components
	LED Clock
	LCD Screen
	Function Buttons
	Reset Button
	Start Button
	Calibration Button
	Fire Button

	DB15 Connectors and Cable

	Other Hardware
	Tools and Supplies

	06 Writing Code
	Documenting the Code
	Layout
	Title Block
	Header Blocks
	Subsection Dividers
	Comments

	07 Libraries, Declarations, and Setup Code
	Libraries
	Declarations
	void setup()
	Using Functions
	Initializing Serial Port
	Splash Screen
	Setup Display Screens
	LED & Buzzer Pins
	Setting Up the Real Time Clock (RTC)
	Checking and Adjusting the Date & Time
	Setup the MicroSD Card Module
	Check the Status of the Card
	Setup the Logs on the Card

	Initialization of the BME280 Weather Sensor
	Testing the HX711 Load Cell Amplifier
	Initialization of the Fire Control System
	All Systems Initialized

	08 The Loop() Function
	void loop() function

	09 LEDs, Buzzers, Clocks and Displays
	The RGB_LED_Lamp_Settings Tab
	RGB Colors
	LED Lamp States

	10 Writing Data to a SD Card
	Information Log
	Opening and Writing the File
	Error Reporting

	Motor Data Log
	System Log

	11 Motor Prep Sequences
	Getting Started
	Test Preparation
	Motor Preparation Information
	Motor Casing Information
	Impulse Information
	Average Thrust
	Delay Time
	Propellant Data
	Ignition Time
	Calculating Data Collection Time

	12 Motor Load Sequence
	Getting Started
	Motor Load Checklist Function
	Motor Mount Checklist Function
	Load Cell Calibration Decision
	Load Cell Calibration

	Clear Test Area
	Setting Up The Load Cell

	13 Fire Sequence
	Transition to the Fire Sequence
	Fire Control Sequence
	Waiting for the Fire Button to be Pressed
	Fire Button Pressed
	Weather Data
	Warning Displays
	Supplying Power to the Test Stand

	ABORT
	Abort Recycle

	Shutdown Period
	Wait Period
	Wait Period Countdown

	All Clear

	Post Test Data
	Followup Testing

	14 Test Data
	Data Collection
	Data Collection Time
	Code Review Conclusion

	15 Building the Test Stand Base
	Base
	Warning Light Housings
	Wiring the Lamps

	Adjustable Legs
	Load Cell
	Load Cell Location & installation
	Motor Mount

	Base Complete

	16 Building the Motor Mounts
	Printed Motor Mount Centering Rings
	Assembling the Motor Mounts

	17 Designing and Building the Electronics Housing
	A Step at a Time
	Individual Component Mounts
	The Jigsaw Puzzle Design
	Back to Tinkercad

	3D Printing
	Installing the Electrical Components
	Wiring
	Changing Pins

	Battery Pack and Continuity Lamp
	Warning Light Wiring
	Platform Levels

	18 Building the Remote Head
	Version 1
	Versions 2 and 3
	Version 4
	Printing the Remote Head
	Wiring the Remote Head
	The DB15 Connector
	The Cover
	Connecting the Cover and Base

	19 Assembling the Test Stand
	Setup Area
	Connections
	Motors and Motor Mounts
	Accessories

	20 Conducting a Motor Test
	Mega2560 Boot
	Data Entry Process
	Pre-fire Process
	Motor Loading Checklist
	Motor Mount Checklist
	Test Stand Calibration
	Tare
	Calibration Weight
	Calibration Value

	Clear Test Stand Area

	Motor Test Fire Process
	Abort
	Motor Firing

	Post Motor Test Firing
	CATO
	Case Mass
	Comments

	Test Complete

	21 Tactics to Improve the Test Stand
	Hardware Updates
	Software Updates and Changes
	Make The Project Yours

	22 Conclusion
	A1 System Drawings
	A2 MEGA 2560 Pin Assignments
	A3 Complete Code Listing
	Test_Stand_V1.0.ino
	Buzzer_Tones.ino
	Calibrate_Load_Cell.ino
	Clock_LED.ino
	Fire_Abort_Recycle.ino
	Fire_Abort_Sequence.ino
	Fire_Control_Sequence.ino
	Fire_Data_Collection.ino
	Fire_Shutdown_Period.ino
	Fire_Weather.ino
	Initialization_Pass.ino
	LCD_Date_Time.ino
	Motor_Load_Sequence.ino
	Motor_Mount_Sequence.ino
	Motor_Prep_And_Test.ino
	Motor_Prep_Avg_Thrust.ino
	Motor_Prep_Calc_Time.ino
	Motor_Prep_Casing.ino
	Motor_Prep_Delay_Time.ino
	Motor_Prep_Ignition_Time.ino
	Motor_Prep_Info.ino
	Motor_Prep_Propellant.ino
	Motor_Prep_Scale.ino
	Motor_Prep_Total_Impulse.ino
	Motor_Recalibration_Sequence.ino
	Motor_Test_Clear_Area.ino
	Motor_Test_Tare.ino
	Post_Test_Data_Entry.ino
	RGB_LED_Lamp_Settings.ino
	Sensor_Data_BME280.ino
	Serial_Monitor_Date_Time.ino
	Serial_Monitor_Splash_Screen.ino
	Setup_BME280_Sensor.ino
	Setup_Date_Time_Check.ino
	Setup_Date_Time_Entry.ino
	Setup_Fire_Control_System.ino
	Setup_HX711.ino
	Setup_LCD_I2C.ino
	Setup_LED_Display.ino
	Setup_MicroSD_Card.ino
	Setup_Real_Time_Clock.ino
	Strobe_LED_Bulb.ino
	Write_Info_Data_To_SD_Card.ino
	Write_Motor_Data_To_SD_Card.ino
	Write_Sys_Data_To_SD_Card.ino
	Compilation Notes - Arduino Mega2560

	A4 Parts Listing
	Electronics

	A5 References
	A6 Project Links

