Convert a 1980s Video Camera Into a Real-Time Polarimetric Imager

by prutchi in Circuits > Cameras

16684 Views, 85 Favorites, 0 Comments

Convert a 1980s Video Camera Into a Real-Time Polarimetric Imager

JVC KY1900 Polarimetric Mod Main Labeled.jpg

Polarimetric imaging offers a path to develop game-changing applications across a wide range of fields – spanning all the way from environmental monitoring and medical diagnostics to security and antiterrorism applications. However, the very high cost of commercial polarimetric cameras has hampered research and development on polarimetric imaging. This paper presents detailed instructions for converting a surplus 1980s-era, 3-tube color camera into a real-time polarimetric imager. The camera used as the basis for this conversion is widely available in the surplus market for around $50. This trash-to-treasure Instructable will show you how to convert a camera that is suitable only as a prop into a useful scientific instrument, commercial versions of which would be worth many tens of thousands of dollars.

You’ll need the following items to perform this conversion:

  • Working surplus JVC KY-1900 camera (models KY-2000 and KY-2700 seem similar to the KY-1900 and may also be suitable)
  • Ø25.4mm wideband 70T/30R beamsplitter (e.g. Thorlabs BSS10)
  • Ø25.4mm wideband 50/50 beamsplitter (e.g. Thorlabs BSW10)
  • 3D-printed beamsplitter adapter rings
  • Sheet of polarizing plastic (e.g. Edmund Optics 86-188)

Understanding Polarimetric Imaging

Light wave properties.jpg

A light wave is characterized by its wavelength, which we perceive as a district color; its amplitude, which we perceive as an intensity level; and the angle at which it oscillates with respect to a reference axis. This last parameter is called the wave’s “Angle of Polarization”, and is a characteristic of light that unaided human eyes cannot distinguish. However, the polarization of light carries interesting information about our visual environment, and some animals are able to perceive it and rely critically on this sense for navigation and survival.

A detailed, and easy-to-understand description of polarimetric imaging and its applications is available in my whitepaper on the DOLPi polarimetric cameras available at:

http://www.diyphysics.com/wp-content/uploads/2015/10/DOLPi_Polarimetric_Camera_D_Prutchi_2015_v5.pdf and its presentation on YouTube at: https://www.youtube.com/watch?v=A7bXkp8SWCA

Buying and Aligning the Camera

Camera Connection.jpg

The KY-1900 was introduced as a professional-grade color camera in the late 70’s. It was one of the few models to be produced with a plastic orange body, making it very distinctive, and a mark of high-end professionalism for camera crews. Back in 1982, this camera retailed for around $9,000.

Today, you should be able to find one in the surplus market for around $50. The KY-1900 was built like a tank, so chances are very good that it will be fully functional if it looks good cosmetically. Just connect it to a NTSC color monitor and supply it with 12VDC (the camera draws around 1.7A).

Before proceeding with the modification, make sure that the camera is in working order and well aligned. Use the instructions shown in Appendix II of the project’s whitepaper to align your camera and check that it works correctly.

Accessing the Optical Assembly

Access Optical Assembly.jpg

The first step in the conversion is to access the camera’s optical assembly, which involves the following steps:

  • Take apart the camera’s left cover
  • Remove the DF printed circuit board
  • Peel-off the plastic isolation sheet that is attached with double-sided tape to the optical assembly’s outer cover plate

Opening the Optical Assembly

Inside Optical Assembly.jpg

Pry off the inner optical assembly cover plate. This plate is glued to the assembly. The plate won’t be used again, so don’t worry about distorting it. However, be careful not to damage the optical elements within the assembly.

The bottom pane of the figure shows the optical assembly of the unmodified JVC KY-1900 camera. Incident light through the First Relay Lens is split into three colored images by the dichroic beamsplitters before they are sent to their respective Saticon tubes via Second Relay Lenses. The modification into a real-time polarimetric imager involves exchanging the original dichroic beamsplitters of the Dichroic Beamsplitter Assembly by wideband beamsplitters, eliminating the color trimming filters inside the Second Relay Lenses, and adding polarization analyzers.

Removing Dichroic Beamsplitter Assembly

Take Off Beamsplitter Assembly.jpg

The Beamsplitter Assembly is held with three screws, one from the front and two from the back. As such, the camera’s right-side cover, PCB, and plastic film must be removed to make these accessible.

3D-Printing Beamsplitter Adapter Rings

Spacer Ring.jpg

The dichroic beamsplitters originally used in the KY-1900 camera have a non-standard diameter, so I decided to use 1”-diameter wideband plate beamsplitters for the modification. My friend and colleague Jason Meyers designed and 3D-printed a retainer ring to hold the 1” beamsplitters in place. CAD and 3D-printing files are available at this DropBox.

Replacing the Dichroic Beamsplitters by Wideband Beamsplitters

Wideband Beamsplitter Assembly.jpg

The next step in the conversion process is to replace the dichroic beamsplitters by wideband beamsplitters. The image needs to be more-or-less equally split into three images, so the first beamsplitter needs to reflect around 33.33% of the incident light, while allowing 66.66% of the light to go to a second beamsplitter that should then split this portion evenly. I used the following beamsplitters:

  • Ø25.4mm wideband 70T/30R beamsplitter (Thorlabs BSS10)
  • Ø25.4mm wideband 50/50 beamsplitter (Thorlabs BSW10)

The wideband beamsplitters within the retainer rings should be installed in the assembly, and the modified Beamsplitter Assembly can then be installed back in place. Temporarily reconnect the circuit boards. Making sure that nothing shorts against the exposed parts of the optical assembly, power-up the camera. Only minor adjustment of the horizontal/vertical potentiometers should be needed to reach alignment if you correctly placed the beamsplitters. You will notice that the image is still in color, albeit a bit washed-out in comparison to the original image. The image still shows up in color because there are very strong filters within the Secondary Relay Lenses that need to be removed.

Accessing the Second Relay Lenses

Access Second Relay Lenses.jpg

Removing the Second Relay Lenses (that's JVC's name for them) from the optical assembly takes some additional disassembly of the camera. This is because the image pickup tubes must be removed before the Secondary Relay Lenses can be taken out.

Start by taking out and disconnecting the printed boards from the cable assemblies. Then remove the back of the camera. The tube assemblies can then be pulled off the tube housings of the optical assembly, giving access to the Second Relay Lenses.

Removing and Disassembling Second Relay Lenses (One at a Time!)

Take Apart Second Relay Lens.jpg

The Second Relay Lenses are held in place by well-hidden,small setscrews accessible from the right side of the optical assembly. Once the setscrew is open, pull out the Second Relay Lens on which you are going to work. Wrap a few layers of thick electrical tape over the two sides of the optical tube and open it using pliers.

Removing the Color Filters and Second Relay Lens Reassembly

Secondary Relay Lens Reassembly.jpg

The color filter should be removed by unscrewing the retainer ring using a spanner wrench or very pointy tweezers. After removing the filter, simply reassemble the lens and finger-tighten.

Eliminating the color filter shifts the focal point of the Secondary Relay Lens, so it shouldn’t be reinserted all the way into the optical assembly. Instead, the modified Secondary Relay Lenses should protrude only about 2.5mm.

The camera can be reassembled after installing and securing with setscrews all of the modified Secondary Relay Lenses. Leave the optical assembly accessible, and only reconnect the DF board temporarily, making sure that it doesn’t short-circuit with the optical assembly.

Realigning the Camera

Alignment Trimmers.jpg

Now is time to align the camera very carefully so that it produces a perfectly black-and-white picture. Some level of color fringing will always be seen because the Secondary Relay Lenses were designed for a narrow band of wavelengths, and are now being used over the full bandwidth of visible light. The fringing is especially noticeable at the edges of the image when the zoom is pulled all the way back, but decent registration can be achieved by patiently following the procedure outlined in Appendix II of the project’s whitepaper.

Making Polarization Analyzer Filters

Cut Polarization Analyzer Filters.jpg

Cut three 1.42”×1.42” squares out of a polarization sheet. I used an Edmund Optics 86-188 150 x 150mm, 0.75mm Thickness, Polarizing Laminated Film. I chose this film instead of cheaper offerings because it features a very high extinction ratio, as well as high transmission, which make for better polarimetric images. Notice in the figure that one of the squares is cut at 45° with respect to the other two.

Adding the Polarization Analyzers

Polarizers in Place.jpg

Attach the polarization analyzers with clear tape within the optical assembly such that they are placed within the optical paths to the tubes as shown in the figure.

That’s it! The conversion is complete. You can test the camera at this stage before reassembling the optical assembly’s cover (I discarded the inner cover), reattaching the plastic sheet, reconnecting the DF board, and closing the camera’s enclosure.

Using the Camera

Polarimetric Demo 2.jpg

The figure shows results with a sample target made with pieces of polarizing plastic at angles between 0° and 180° along with a colorbar. The target as captured from the modified JVC KY-1900 camera shows the colorbar and other non-polarized elements of the picture in gray-scale, while the pieces of polarizer film are brightly colored, encoding their angle of polarization in NTSC’s RGB space.

For additional information on this project, please download the project's whitepaper from www.diyPhysics.com.